
ViTE

October 19, 2020

Technical Manual

1

Contents

1 Introduction 4

2 Convention for making code 5
2.1 Convention to code . 5

3 Parser module 7
3.1 Parser Paje . 7

3.1.1 Representation of the file trace line by line 7
3.1.2 Representation of the definitions described in the trace file . 7
3.1.3 Acknowledge of definitions’ lines 8
3.1.4 Event parser . 9
3.1.5 Handling of a trace . 9

3.2 Parser OTF . 9
3.2.1 Introduction . 9
3.2.2 Implementation . 10
3.2.3 Supported functions . 10
3.2.4 Definition Parser . 11
3.2.5 Event Parser . 11

3.3 Parser ViTE . 11
3.3.1 Utility of this parser . 11
3.3.2 How it works . 11

4 The data structure 13
4.1 The Main classes . 13

4.1.1 The class Trace . 14
4.1.2 The class container . 14
4.1.3 The class State . 14
4.1.4 The class event . 14
4.1.5 The class Link . 15

4.2 The lists . 15
4.3 The trees . 15
4.4 Algorithms on the trees : . 16

4.4.1 Browse tree . 16
4.4.2 Getting informations on a clicked element 17

5 Human-Computer Interface 18
5.1 The Interface class . 18
5.2 The ViTE notify message system : the Message class 18
5.3 Console User Interface : class Interface console 19

5.3.1 Description . 19
5.3.2 How it works . 19
5.3.3 Managing of the arguments 20

2

5.3.4 Graphical User Interface : class Interface graphic 20

6 The render system 21
6.1 The render opengl . 21

6.1.1 The drawing methods . 21
6.1.2 The scrolling and scaling methods 22

6.2 Render out Svg file . 24

7 The plugin module 27
7.1 Overview . 27
7.2 How to build a plugin . 27
7.3 Existing plugins . 29

7.3.1 The statistic window . 29

8 Some possible ameliorations 31
8.1 Using filters . 31
8.2 Export in another file format . 31
8.3 Allocation by lot . 31
8.4 Reading at the flight . 32
8.5 Saves of configurations . 32
8.6 Interface enhancement . 32

3

Chapter 1

Introduction

With the ever increasing dissemination of multi-core architectures, parallel and/or
distributed applications are becoming the norm, so as to use computer resources
as efficiently as possible. Trace collection and visualization is useful for developers
willing to debug and monitor the performance of their parallel applications. Yet,
most existing trace visualization tools are proprietary or cannot handle large trace
files.

ViTE is a powerful, portable and open-source profiling tool which visualizes
the traces produced of parallel applications. Thanks to its scalable design, ViTE
efficiently helps programmers to analyze the performance of potentially large appli-
cations running on many cores and communicating processes.

ViTE allows one to visualize traces written in various formats (such as the Pajé
open format, see http://www-id.imag.fr/Logiciels/paje/, or the OTF format).
Its features comprise the ability to export views in the SVG format, so as to integrate
them easily into reports, and the production of statistics.

The aim of ViTE is to have a free and open software able to display different
traces format with a user-friendly interface. That is why it is under Cecill-A licence.

More information is available on the official website of ViTE :
http://vite.gforge.inria.fr/ , or on the forge itself :
http://gforge.inria.fr/projects/vite/.

4

http://www-id.imag.fr/Logiciels/paje/
http://vite.gforge.inria.fr/
http://gforge.inria.fr/projects/vite/

Chapter 2

Convention for making code

2.1 Convention to code

Gereralities

• The software is totally written using C++ language.

• Source files must be named *.cpp and headers *.hpp

• Code must have commentaries in order to create automatically documentation
using the Doxygen tool.

• The indentation is 4 spaces.

• Directories are organized using modules.

Variables

• Variables’ names only contain letters and numbers. Letters belong to [a-z]
and [0-9], excluding [A-Z].eg : temp, size2

• If a variable is composed of more than one word, then words must be separated
with the underscore symbol, and all the letters are in [a-z][0-9] as said
above. eg : number of item, size of window, ...

• Boolean variables must have a name that remain their functionality, so their
names must start with the prefix is or has . eg : is enabled

• Attributes of classes or structures must begin with the symbol underscore.eg
: name, is enabled, width

Constants

• Constants are written using only [A-Z] and [0-9].

• If a constant is composed by more than one word, then they must be, as for
variables, separated using the underscore symbol.

Functions and methods

• Functions’ names only contain letters and numbers. Letters belong to [a-z]
and [0-9], excluding [A-Z].eg : set width(), get size()

• The names of the functions must always contain an action verb.

5

• Accessors must start with the get verb followed by the nature of the object
returned. eg : get length(), get value()

• Mutators must start with the set verb followed by the field modificated.eg :
set size(), set value()

• Functions which return a boolean must start with is .

• Each opening of bloc must be on the same line as the prototype of the function,
the condition, whereas the end must be on a new line.

Eg :

if(bool) {

}

else {

}

Classes

• The names of the classes must begin with an upper-case letter followed with
only lower-case.

.cpp files

• Namespaces are declared in the .cpp and not in the .hpp file.

• For classes, each .cpp file corresponds to a .hpp file, with exactly the same
name. Headers are included in the .cpp files.

• The file contains the implementation of all the functions declared in the .hpp
file (unless virtual functions).

.hpp files

• Classes are defined within a .hpp file of same name, no function is implemented
within (unless templates).

• The file begins with a #ifndef instruction followed by CLASS NAME HPP

• Then a #define instruction followed by CLASS NAME HPP as above.

• It is preferable to put includes in the .cpp tather than in the .hpp

• Classes begin with the declarations of the variables, followed by the construc-
tors and the destructor, and finally the declarations of the methods.

• The private keyword must clearly be written such as public.

• The file must end by the #endif instruction.

6

Chapter 3

Parser module

3.1 Parser Paje

3.1.1 Representation of the file trace line by line

Introduction

A line is a syntaxical unit in a file following the Pajé trace format. Tokens are
supplied by a File (a class which encapsulates a std::ifstream). In Pajé file trace
format, a line is the beginning of a definition, the end of a definition, a definition
or an event.

For example :

• ’%EventDef PajeDefineContainerType 1’

• ’% Name string’

• ’111 1.03305 MT 31:11392 315706-13 112’

Implementation

Line object stands for a line. The method fill line() fill the object. It enables the
item() method to access line’s tokens : the item() method is an indexed access to
line’s token.

Construction of a line A line is built by fill line() that consists in append
character while they do a token and as long as the current token read is different
from ’\n’.

Storage A private std::vector<std::string> stores line’s tokens. Actually there is
no use of an indexed access. The item() method could simply supply the next token
of a line.

3.1.2 Representation of the definitions described in the trace

file

Introduction

A Definition is the definition of events found while parsing the file. It is always
composed by a field ”name”, with other caracteristics of the event such as type or
values. The set of definition is stored in a table. The definition and its identifiers
are paired. For example, with this file trace :

7

%EventDef PajeDestroyContainer 8

% Time date

% Name string

% Type string

%EndEventDef

%EventDef PajeDefineStateType 3

% Alias string

% ContainerType string

% Name string

%EndEventDef

The table of definitions will be {(8, d1),(3,d2)}, the d1 definition {”PajeDestroyContainer”,{f1,f2,f3}}
and the f1 field {”Alias”, ”string”}.

Implementation

Extensible definition fields are stored in a std::vector. Couples of definition and id
are available in a std::map<int,Definition> hash table.

3.1.3 Acknowledge of definitions’ lines

Introduction

ParserDefinitionDecoder performs a received Line which starts with percent.

Definition

A field Line is a Line with the two first tokens that are the name of a variable
and a name. A EventDef Line is a Line with the first token that is EventDef. A
EndEventDef Line is a Line with the first token that is EndEventDef.

A definition is a set of lines that begins by an EndEventDef Line, have an
indefinite number of fields Line and ends with an EndEventDef Line.

Automaton of definition

Implementation faithfully uses the automaton described.
Automaton reaches ”in a definition” when an EventDef Line is read and instan-

ciated a new definition which enables :

• reading a field Line : which is translated and read fields are added to the
current definition.

• reading an EndEventDef Line : which consists in storing the current definition
in the table and fall in ”out of a definition”.

Specification

A ParserDefinitionDecoder can be instanciated by an empty constructor.
The store definition() method requires a filled Line Object which starts with

percent tokens and returns when this line is read.
get definition() enables access to the table of definition.

8

3.1.4 Event parser

Introduction

The parser provides a Line which represents an event and the definition of this
event. The purpose of the event parser is to give the values of this event to the data
structure in order to store it.

Implementation

The event parser contains only one method which fills the data structure step by
step with the lines (Line) provided. To do that, there are as many local variables as
known field names in Pajé’s events. The variables which fit the event defined by the
definition (Definition) are filled ordered by the fields of the definition by converting
the strings read in the line to the defined type. The values which do not fit some
known field names are stored in a vector. Then, the event parser uses the data
structure methods to fill it. The variables given as arguments for these methods
depend on the Pajé event name.

3.1.5 Handling of a trace

Introduction

ParserPaje reads a file trace and sends messages to Trace accordingly.

Implementation

ParserPaje opens a file (instanciate a Line), instanciates a ParserEventDecoder and
a ParserDefinitionDecoder. It reads lines until the end of the file. Each line is
parsed by ParserEventDecoder or ParserDefinitionDecoder whether or not the line
starts with % token.

Specification

A ParserPaje can be instanciated by an empty constructor. The parse() method
requires a filename to be opened and an instance of a trace object to proceed.

Tests

A test reads a trace file, uses the ParserDefinitionDecoder and ParserEventDecoder
and prints the calls to the trace object. Each event produces a call as expected.

3.2 Parser OTF

3.2.1 Introduction

The OTF format is an open format. Moreover, the OTF library provides tools to
convert Vampir’http://www.vampir-ng.de/ or Tau(http://www.cs.uoregon.edu/research/tau/home.php)
traces which are some of the most common used trace format. An API is also pro-
vided in order to read the files.

More details can be found at
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/software_werkzeuge_zur_unterstuetzung_von_programmierung_und_optimierun

(in english or deutsch).

9

http://www.vampir-ng.de/
http://www.cs.uoregon.edu/research/tau/home.php
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/software_werkzeuge_zur_unterstuetzung_von_programmierung_und_optimierung/otf

Figure 3.1: The Pajé parser automaton

3.2.2 Implementation

The OTF parser uses two parsers like the Pajé one. We decided to separate the
definitions from events for a better scalabity. Moreover, we use the provided API
to parse the files because it is a portable interface.

3.2.3 Supported functions

Because they are optional and do not have a direct correspondance with the Pajé
format, we do not handle the following functions :

• Definition, event, snapshot and summary Comments.

• DefCreator.

• Collective operation.

• Snapshots.

• Summaries.

Also we do not take in account the streams in optional fields.
In the future we could consider that snapshots are events.

Correspondances and differences between this format and the Pajé one

The genericity of the Pajé format is very useful because we do not need to create
other classes for the trace.

So, a process will be designed as a container in Pajé format. A process group
will be considered as the container type in order to keep the Pajé format. If a
process does not belong to a process group, we assign it to the empty process group

10

(the 0). However, a process can belong to more than one process group. We do not
handle this case and only consider that the first one found is the process group.

A function will be an event and its function group will be the EventType.
A counter will be a variable and a counter group the VariableType.
A message will be a link. Its value will be : ”sender name to receiver name”

because there are no message value in the OTF format.

3.2.4 Definition Parser

This parser stores all the OTF objects (process, functions...). In order to do it, we
use the provided API which uses handlers.

Variables in the ParserDefinition are static because this is the only way to handle
handlers.

While parsing, we only store each component. At the end of it, we create all the
ContainerType. We can not create the EventType or VariableType because we do
not know in which kind of process the event or the variable is used.

3.2.5 Event Parser

Due to the optionnality of the process creation, we have to check before each event
or counter catched that the container exist.

Now that we know which kind of process uses the event or counter, we can create
the eventType or variableType if they do not exist. Because of the fact that if an
event does not exist, it is automatically created by the trace, we can not add the
optional fields like source file or color. In order to pass through it, we added a
boolean attribute to the function structure which says if the function has already
been defined.

For the counter, we are not sure that the sender has an ancestor. If it is not the
case, we consider that the ancestor is also the sender.

The handling of the remaining time is in the EventParser too. Because we
consider (good consideration?) that reading the definitions is done faster than
reading the events, we only take the time for events to compute the remaining
time.

3.3 Parser ViTE

3.3.1 Utility of this parser

The aim of this parser is to split the Pajé traces in various files (one file per process).
The main point is to enhance trace generationusing the Pajé format and avoid
having various processes writting at the same time in the same file. The constraint
is to have a synchron clock.

We have a definition file containing all the definitions and the creation of all
the containers. An optional field containing the file name where all the events of
this container is provided in order to parse it. The other files only contain actions
(events, links or state changes).

3.3.2 How it works

The first file given is parsed with a ParserPaje and all the definitions are stored
in the parserViTE. Then we get from the trace all the filenames where there are
events. A parserEventPaje reads all the files and store in parallel all the end of
links because it is possible to read an end before a start (in this case the link will

11

not be printed). At the end of all the parsing, a new parserEventPaje stores all the
end links.

12

Chapter 4

The data structure

The data structure is composed by 2 main parts :

• The first one where while parsing double chained list are built,

• The second are trees that are built above the lists.

4.1 The Main classes

To represent the diversity of the Pajé trace format, we have created a wide variety
of class that represent the various abstractions on objects :

• Trace

• Container

• State

• Event

• Variable

• Entity

Moreover, we had to create some other classes that help creating these objects
such as their type. The definition of these types is necessary to use polymorphism
in the optionnal fields that can be added (they all inherit from the Value class).

The basic types used in the data structure are defined in the values directory.
These types are :

• Color

• Date

• Double

• Hex

• Integer

• Name

• String

• Value

The definitions for the tree and the interval are in the tree directory.

13

4.1.1 The class Trace

The class Trace represents the trace object generated by the user. It contains the
elements :

• List of type of container

• List of container

• List of states

• List of events

• List of links

• List of variables

Moreover an attribute that contains the date when the latest action happens in the
trace has been created. The methods only enable the construction of the trace, the
possibility to get the values of the attributes, and to research some elements in the
trace.

4.1.2 The class container

It represents an object of type container. In this class, there are :

• A name

• The date of the beginning and end of the container

• Type of container

• A father

• A list of children

• Set of states, events, links, and their cardinal

The methods are accessors.

4.1.3 The class State

It represents a state of a processor, a container. This class contains the only object
of Pajé that is not directly presented. Because the use of trees of punctual events,
we do not consider the states but the change of states as a relevant facts. This class
has :

• Dates of beginning and end

• Type of state

• A descriptor of the value of the state, contains the optionnal fields.

The methods are accessors and a constructor attribute by attribute.

4.1.4 The class event

It represents an event that occurs in the trace. An event is made by :

• A date when it occurs

• A type of event

• A descriptor of the value of the event, contains the optionnal fields.

Here, the only methods are accessors.

14

4.1.5 The class Link

It represents a communication between 2 containers in the trace. The attributes
are :

• Dates of beginning and end

• A type of link

• The containers source and destination of the communication

• A descriptor with the value of the link(contains the optionnal fields). Methods
are accessors.

4.2 The lists

The lists are based on the std::list template. They are built in the logical order,
each time an element is sent by the parser, it is added in last position in the right
list (after making sure the data are rights).

The states are not seen as having a duration but punctual, as brief moments
that represent either the beginning or the end of the action. So, to remain logical,
a binary tree is not made with states, but with elements from the StateChange
class, because a state is not punctual whereas a change is, and represents the same
information.

The lists may be :

• List of links, that are contained in the container that is related to the container
where the communication starts and where it ends.

• List of containers

• List of States/Events, but they are transformed in binary trees after their
construction

4.3 The trees

The trees do not concern the list of communications. The tree is binary and bal-
anced.

Assuming there is a list, a class is used to build the tree reading only one time
each element of the list.

The algorithm of construction is based on binary incrementation. To sum up
the main idea, 1 element in the list on 2 is a leaf, as the lowest bit in binary, 1
element on 4 is a father of leaves, as the second lowest bit in binary, etc ...

Assuming we know the lenght of the list, we can calculate the height of the
tree (because it is balanced) and then the number of leaves in the lowest level.
While we have not reached this number of leaves, we build a binary tree linking the
nodes depending on their position in the list (in binary). After this limit, a shift is
necessary but the algorithm remain the same.

And so we have a binary tree, linked with an infix order kept : each node happen
after all the nodes down in its left side, before all the nodes down in its right side,
and these latter happen before the father date.

Then, there is a class that links the data structure and the interface, to be able
to get all the events within an interval without being forced to visit each previous
node.

15

4.4 Algorithms on the trees :

4.4.1 Browse tree

The main idea is a recursif browse of the tree. Going down we select the node
that are in the interval, and going up we make sure the node is displayable, and
prepare some data for the father to know if it can be displayed.

Algorithm :

function browse_recursif (root, interval, zoom)

if the node is in the interval

If the interval is wide enought to display the node

browse_recursif (left child)

browse_recursif (right child)

If there is a problem on the left side of the left child

Copy the problematic data in the node

end if

If there is a problem on the right side of the left side and

the left side of the right child

Making sure we can display the node, or be added to an

interval of conflict that is then displayed

end if

If there is a problem on the right of the right child

Copy the problematic data in the node

end if

If the node has not been displayed yet

Display the node

end if

else // Not wide enought to display

Current interval set as problematic in both problematic area

end if

Else if node is after the interval

browse_recursif (left child)

Copy the data of conflict on the left in the left child

Else // Node before the interval

browse_recursif (right child)

Copy the data of conflict on the right in the right child

end if

end function

16

4.4.2 Getting informations on a clicked element

Principe : First we browse for the links (because if we start by something else
: state, counter or event, we would not be able to find the links because they are
over the others elements and thin enought not to hide them). Because the use of a
distance, sometimes to get the right information, it is important to zoom enought.

Algorithm :

function get_information(positionX, positionY)

calculate the lowest container in the tree of container where

the clic corresponds

for each container father of the container clicked

look for a communication close enought

if one is found

return this communication

end if

end for each

Search in the list of events of the lowest container

if one corresponds

return it

end if

end search

Search in the list of states of the lowest container

if one corresponds

return it

end if

end search

return no information found

end function

17

Chapter 5

Human-Computer Interface

The interface is divided into two main classes : the console interface and the graph-
ical interface inherited from the Interface class.

5.1 The Interface class

The class Interface declares three pure virtual functions that are used by inherited
classes to display messages for users :

• virtual void error(const string) const = 0;

• virtual void warning(const string) const = 0;

• virtual void information(const string) const = 0;

These functions are defined inside the Console User Interface (Interface console
class) and the Graphical User Interface (Interface graphic class) which both inherit
of the Interface interface.

In the first case, the messages are displayed in the Operating System terminal.
In the second class, Qt text feature is used to display the messages inside a window:
Info window.
Nevertheless, ViTE modules (like the Parser, the Data Structure, the Render area,
etc.) need to:

• Have an easy way to display message.

• Be independant of the place the message is displayed

Thus, to respect these two requirements, the Message class was created.

5.2 The ViTE notify message system : the Mes-

sage class

The Message class was developped with the following leitmotiv : to provide an easy-
to-use way to display messages for users anywhere inside the ViTE source code.
For all the ViTE parts, just a single Message class instance is needed. Thus, this
class is a singleton. To pass many different argument types (such as int, string,
bool), the stringstream class is used.
To display messages just recover the instance (the only instance) and use it like
cout or cerr of the STD library. Nevertheless, you need to finish your message to

18

pass a special object instance : it will be Message::endi (for informative message),
Message::endw (for warning message) or Message::ende (for error message).

A message processing is different, depending on the special object used to end
the message. For example, it influences the message color (orange for warning, red
for error) in the graphical interface or add Warning or ERROR at the beginning of
the message in the console interface.

Moreover, there is an other special object : Message::endsi (for selection infor-
mative message). It is used to display information about the mouse selected entity
in the graphical interface only.

NOTE : In the graphical interface, messages are displayed in the Info window.
Example 1: You need to notify the user that an error occured.

*Message::get_instance() << "An error occured." << Message::ende;

Figure 5.1: Message render: Left: in the System terminal - Right: int the Info
window.

Example 2: You need to notify the user that the trace is misformed. Use a
warning message.

*Message::get_instance() << "Incorrect value l." << line << " of \

file: " << file << "." << Message::endw;

Take advice that you can define macro to use as debug :

#define message *Message::get_instance() << "(" << __FILE__ <<" l."\

<< __LINE__ << "): "

Thus, just use message instead of *Message::get_instance() in the source
code.

5.3 Console User Interface : class Interface console

5.3.1 Description

The Interface console class is the most critical class of the software. It is the ViTE
core since it manages and connects all the application modules. For example, it
analyses the command line, launches window interface, creates a parser and triggers
the data structure filling. Moreover, it is used to broadcast the messages between
the render area (in OpenGL) and the graphical interface (in Qt). Besides, it triggers
the SVG export of an opened file.

ViTE modules connections can be seen as a star where the Interface console
class is set on the middle. This organisation was designed to provide an easy and
safe way to manage threads.

5.3.2 How it works

First, the main function of ViTE creates a console interface and gives it to the
command line parameters.

Then the console interface analyses the parameters from its constructor. It gives
them the get_state() function, which returns a code number of the right action

19

to be executed. This latter is given the launch_action() function which executs
the action corresponding to the code number.

For example: if the user calls ViTE with the command line:
vite -h

get_state() returns the STATE_DISPLAY_HELP code number. Then from this
latter, launch_action() will be called and will apply the diplay_help() function
that displays in the terminal the ViTE synopsis.

5.3.3 Managing of the arguments

We saw, in the last section, an example of using ViTE by command line to launch
the help.

The arguments are managed by a loop in the get_state() function and the ac-
tion to do is set in the integer state. The loop can be considered like an automaton
which recognizes the arguments passed in parameter.

There are two kinds of arguments : the ones beginning with a ”-” and the
others. The ones beginning with a ”-” are the options of ViTE and are predefined
in the get_state() function. The others are the arguments of these options or, by
default, the file to open.

When the option is known, the state value will be changed depending on the
option and the option consumes the next argument if needed. If the option is
unknown, the help is printed.

For example, to export a file in svg you can call : ./bin/vite -f in -e out

. The loop starts by reading the -f option. This option consumes the next token
which corresponds to the file to open (the in token here). Then, because of the
consumption of the argument in, the loop will read the -e option and set the next
argument as the name of the destination file.

The loop makes a comparison between the argument and all the pre-defined
options.

So, it is easy to add options :
First of all, depending on the option aim, you will need to add a new state in the
header (for example _STATE_OPEN_FILE is used to set the state for opening a file).
Then, in the get_state() function, add the case you want and what you want to
do with it. If you want to change a parameter of another class, the best way is to
do a static method in this class and call it in the case (it is what has be done to
add the epsilon option for the export in svg and this method do not need a new
state). Do not forget to consume the next parameter if necessary (check before if
one exists). Maybe, you will need to do another thing and to set a new state, and
moreover you will need to return it without preoccuping of the other ones. The
action to set then has to be put in the launch_action() function. Do not forget
to add the option in the help.

Some states are compatible, like for example the opening or exporting a file in
an interval which are two different arguments. The choice made is to use binary
operands for them and to do binary OR when we have the ”-t” argument. To help
to the comprehension, two states were added to specify that we are in an interval.

5.3.4 Graphical User Interface : class Interface graphic

Graphical window interface is created by Qt designer in a .ui file (main window.ui).
The graphical interface loads it and displays the window generated from the file.

In a same way, the informative window is loaded from the info window.ui file.
In the _render_area_layout, a Render_area object is created. It displays an

OpenGL scene.

20

Chapter 6

The render system

The render system is the most important ViTE module since it provides graphical
output of the trace files. Currently, they are two ways to render a trace file: the
direct render or the in-file save render.

The Render class defines several passives displaying methods. What is a passive
displaying method? It is a method which just perform a displaying action (call-
ing OpenGL functions or in-file writing function for SVG output) according to its
parameters.

Thus, theses methods do not call any others functions to browse, for example,
the entity tree.

6.1 The render opengl

6.1.1 The drawing methods

Render opengl uses the QGLWidget to display graphics using the OpenGL API.
With three Qt functions, the scene is initialized (initializeGL()), resized when
the main window is resized (resizeGL()) and displays the trace (paintGL()). Two
functions are used to display a trace :

• build() − > creates the display of a trace loaded in the data structure.

• unbuild() − > releases the scene.

The build() function build() is called when a new trace needs to be drawn.
It releases the waiting screen (currently a rabbit turning) and the timer associated
with the waiting screen (for animation).

The unbuild() function This function is the complementary of the build()

function : it releases the trace design and displays the waiting screen (and also
restart the timer for the rabbit animation).

The drawing function To enhance the ViTE performance the drawing functions
- called by the Data Structure while it browse the trace tree - are inlined functions
and are defined in render opengl.hpp. There must be an ordered to respect the
OpenGL Display List mecanism. So, each display list should be opened, filled then
closed.

Currently, there are three OpenGL Display List used for the render area: the
container, state and counter Display Lists.

21

Nevertheless, arrows and events do not belong to a Display List since they must
be drawn according to the current scale. (Else, the triangle of the arrow will be
scaled and mask the states under it!)

Following, the list of calls is given and must be respected for each kind of ob-
jects else OpenGL errors should be lifted. Thus, for container (and also container
text), state, arrow and counter, the drawing function (i.e. draw *()) must be called
between start draw *() and end draw *():

1. start draw()

2. (a) start draw containers()

(b) draw container()

(c) draw container text()

(d) end draw containers()

3. (a) start draw states()

(b) draw state()

(c) end draw states()

4. (a) start draw arrows()

(b) draw arrow()

(c) end draw arrows()

5. draw event()

6. (a) start draw counter()

(b) draw counter()

(c) end draw counter()

7. end draw()

6.1.2 The scrolling and scaling methods

One of the most important feature of ViTE is to allow user to freely move in the
trace render. They are two primitives available to move in the trace: the scrolling
and the scaling.

NOTE: the origin of render area is at the top-left of the QGLWidget.
NOTE: please refer to the ViTE API documentation to know each

following attribute meanings.

• Scrolling allows the user to move the image to the left, the right, the top or
the bottom in the render area.

• Scaling allows user to resize the image, for example to perform a zoom in
particular point.

Thus the user can visualize any part of an image trace just with his keyboard
and his mouse. Nervertheless, ViTE needs to know what kind of action (push on
a touch, move the mouse, etc.) the user does. The information is given by Qt.
Since the render opengl is a Qt object (a QGLWidget), it receives some of these
events (like mouse movement over the render area or mouse click). The others
(some keyboard event) are caught by the graphical interface since they are bound
as a shortcut then send to the render area with the Qt signal and slot mecanism.

Now, we just present the different attributes and methods used to perform
scrolling and scaling.

All of them have the same type: Element_pos.

22

• – _screen_width: the Qt QGLWidget width (in pixel).

– _screen_height: the Qt QGLWidget height (in pixel).

• – _render_width: the render area width (in OpenGL unit).

– _render_height: the render area height (in OpenGL unit).

Both of the _screen_* and _render_* represent for the user the same area in
his monitor but with a different point of view.

Figure 6.1: The render area dimensions. The both measures (green and orange) are
the same but in different units.

To convert screen units to render units, you have to use screen_to_render_x()
and screen_to_render_y() (please refer to the ViTE API documentation for a
whole synopsis). To pass from render to screen, user render_to_screen_x() and
render_to_screen_y().

Moreover, we need to get the trace coordinates to know, for example, from which
entity the user has just clicked. So, there are two methods to convert from render
units to trace units: render_to_trace_x() and render_to_trace_y() and also
trace_to_render_x() and trace_to_render_y().

Another important coordinates are the trace coordinates. There are several
attributes to defines a render :

NOTE: all of the following coordinates are in the trace unit. (and not
in OpenGL unit)

• – Container coordinates

– _container_x_min

– _container_x_max

– _container_y_min

– _container_y_max

• – State coordinates

– _state_x_min

– _state_x_max

23

– _state_y_min

– _state_y_max

Figure 6.2: Container and state dimensions in a trace. (in trace unit)

Finally, the trace entity positions : NOTE: all of the following coordinates
are in the OpenGL unit.

• _default_entity_x_translate

• _ruler_y

• _ruler_height

• _x_scale_container_state

6.2 Render out Svg file

Introduction

As render opengl, render svg must implements the drawing functions. It consists
in outputting data in a svg file. Data to be printed in the file, are buffered in dif-
ferents std::ostringstream buffer. Main elements are stored in _buffer, flushed
regularly by print(). In a svg viewer, the last element in the file are displayed in
the front : the thinnest element must be printed as latest as possible : these are
stored in _thin_element_buffer. Counter are stored in _chronogramme, and the
scale is stored in _time_scale.

Required settings

Render in svg may produce a high weight file due to numbered elements and default
scale setting may hide some relevant events. That is why render svg allows user to
set the width, heigth and accurracy of the render. These are set by default with
the following static functions :

24

Figure 6.3: Container and state positions in a trace. (in OpenGL unit)

• Svg::set height factor(double)

• Svg::set wide factor(double)

• Svg::set interval(double, double)

• Svg::set accuracy(double)

• Svg::set scale frequency(double).

Initialisation

render svg opens the file specified by Svg::init(const char *path) and output
the header. Css embedded stylesheet reduces style attributes in each elements.

drawing

The procedure to implement functions such as draw_arrow, draw_container or
draw_state is the same.

render svg controls that the elements to be displayed are in the appropriate
range, set by Svg::set_interval(double,double). In this release, the render
reshapes itself too tall elements, but in the next version of Vite, the reshapement can
be replaced by warnings (a correct draw trace function doesn’t need this control).

Then, render svg computes positions and colors according to parameters. Any
elements are widen by wide factor to convert time in ms to pixel, heights are grown
by height factor for the same reason.

Positions are translated to container width max : the left region occuppied
by containers and MARGINTOP the upper region reserved for scale. Color are
converted from floats to RGB.

Whenever a time selection is set, are translated to (-) start interval time (in
ms, ie - start interval time* wide factor pixel).

The computed position allows the call to basic shape painting functions such as

Svg::rectangle(const char* name, Element_pos w, Element_pos h,

Element_pos x1, Element_pos y1, unsigned int r,

25

unsigned int g, unsigned int b)

which corresponds to write in the svg output :

<rect class=’name’ title=’name’ width=’w’ height=’h’

x=’x1’ y=’y1’ fill=’rgb(r,g,b)’/>

drawing counter

Drawing counter is an automaton. See the schema for details. Svg paths are used
to display counter.

drawing scale

Each element position corresponds to a time. The latest element indicates the total
time. The total time multiplies by width factor equals the total width. The scale
consists in drawing a time value regulary.

ending function

Svg::end() flushes left buffered informations, writes the scale, the cursor and ends
the svg file. The cursor is only available on javascript enabled svg viewers (e.g.
firefox).

26

Chapter 7

The plugin module

7.1 Overview

The plugin module has been designed in order to provide more functionalities to
the users. Its main utility is to show statistics of traces but it could be used for
other things like communicate with other programs, use filters on the trace...

7.2 How to build a plugin

The main classes for creating plugins are the Plugin and PluginWindow ones.
The PluginWindow class looks for plugins in your $HOME/.vite directory (and

the ones you have set in the preference window) and loads them. Also, it loads
the static plugins created by ViTE developers. The plugins are loaded using the
QLibrary class from Qt in order to be portable. The plugins window is shown on
figure 7.1.

The Plugin class is the base class for plugins. It inherits the QWidget class
which is the base class for showing windows in Qt. It contains the basic methods
used to load and initialize a plugin :

c l a s s Plugin : pub l i c QWidget {
protec ted :

std : : string name ;
Trace∗ t r a c e ;

pub l i c :
Plugin (QWidget ∗parent = 0) : QWidget(parent){}
v i r t u a l void in i t () = 0 ;
v i r t u a l void clear () = 0 ;
v i r t u a l void execute () = 0 ;
v i r t u a l std : : string get name () = 0 ;
v i r t u a l void set arguments (std : :map<std : : string /∗argname∗/ ,

QVariant ∗/∗ argValue ∗/>) = 0 ;

v i r t u a l void s e t t r a c e (Trace ∗ t) { t r a c e = t ; }
} ;

The init method is called once after the plugin is created and the trace set. It
should initialize the plugin.

The clear method clears the window corresponding to this plugin. It is called
when you change the tab.

27

Figure 7.1: The plugins window.

The execute method is called when you click on the execute button in the plugin
window. It should execute the plugin.

The get name method returns the name of the plugin. The name is used as the
title of the tab.

The set arguments method is used to set arguments... Not yet sure of the
prototype :).

Moreover, your plugin must contains a create function as the following one (if
your class is a NewPlugin one):

extern ”C” {
Plugin ∗ c r e a t e () { r e turn new NewPlugin () ; }

}

In order to create the window, you can use the Qt Designer or create it from
zero in the code.

To compile a plugin, the easiest way is to use a Qt .pro file and use qmake. You
create a lib template and put all the files you need in order to compile the plugin.

Then to use it, you put the shared library created in the $HOME/.vite directory.
You can launch ViTE again and it should appears in the plugin window.

28

You have an example of a simple plugin in the plugin directory directory (created
from zero) and a more difficult with the statistics one.

The class should looks like this :

#inc lude ”Plugin . hpp”

c l a s s NewPlug : pub l i c Plugin {

pr i va t e :
a t t r i bu t e s , methods . . .

pub l i c :
NewPlug(QWidget ∗parent = 0) : Plugin (parent){}
void in i t () { p r i n t f (” i n i t \n”) ; }
void clear () { p r i n t f (” c l e a r \n”) ; }
void execute () { p r i n t f (” execute \n”) ; }
std : : string get name () { r e turn ”New plug ” ;}
void set arguments (std : :map<std : : string ,

QVariant ∗>) { . . . } ;
. . .

} ;

extern ”C” {
Plugin ∗ c r e a t e () { r e turn new NewPlug () ; }

}

7.3 Existing plugins

7.3.1 The statistic window

This plugin allows the user to watch some statistics on the code. The statistics are
provided in order to ease the access to important data. For example, without them
it could be hard to compute the time for each states in a container.

It is useful when you need to know how many time a processor works.
This paragraph will describe how the statistic window works as well as the

different stats already implemented.

The stats window

The window is designed with Qt Designer. The designed file is in the interface
folder and the source code in the statistic folder. It is divided in three important
part as you can see in the figure 7.2. The first one is to set the values for which
kind of statistic you want. There are two QLabel for the times and two box for the
kind of diagram and the kind of states you want to print.

The second is the tree of each node you can have statistics. It is a QTreeWidget
filled recursively in the constructor.

The third one is the most important, it is the stats render. It is a render stats opengl
object. This class inherits from a QGLWidget and is used to show the diagrams.

The same idea that for the trace render has been used. That means that we
did an interface for the render which enable us to convert stats in which format we
want (... which is implemented of course). This is why we can watch the stats in
two formats : the openGL one which is used for the render and the svg one which
is used to be exported.

29

Figure 7.2: The statistic window

The DrawStats template

This is the interface which takes as parameter the draw class you want. It contains
a lot of attributes for the geometrical informations like the start time for drawing,
the size of a container...

It is designed in order to be inherited by classes which will print the stats
wanted. For example, the DrawHDiagram (H for horizontal) or the DrawCounter
inherit from it.

30

Chapter 8

Some possible ameliorations

This section is for the maintenance of ViTE and describes some features that
could be added to it. They are not all described here and there is a better list in
http://gforge.inria.fr/pm/task.php?group_id=1596&group_project_id=3732.

Of course, there could be some features not written here that could be imple-
mented. Moreover, some of these features are already in Pajé.

8.1 Using filters

Unlike Pajé, there is no filters in ViTE.
We could add some like :

• filtering on the printed data : in order to improve the legibility of the trace,
we could hide some events, nodes, links ... printed in the trace.

• filtering on the trace during parsing to do not keep some events too little or
some entities (links for example) to improve the time spent to parse and show
only what is useful.

• filtering by container to only show the ones we want...

8.2 Export in another file format

ViTE can export a trace in a svg format.
The advantage of this kind of format (vectorial) is that the quality of the trace is
perfect because we can zoom in or out with the precision we want.
The problem is that the output file can be more than three times bigger than the
original file (for an export of the whole trace).
So, it can be difficult to open it after. The export in a non-vectorial format can
reduce the output size and make easier to open with only a slighty difference of
quality.

8.3 Allocation by lot

For the moment all the different events are stored in memory one by one.
It could be very slow for very big traces. The idea, in order to do a new object

for each event, is to do a tabular which could store a group of event.
The aim is to reduce the number of allocations which cost a lot.

31

http://gforge.inria.fr/pm/task.php?group_id=1596&group_project_id=3732

8.4 Reading at the flight

For a better interactivity with ViTE, you would like to be able to see the progress
of a loading file or watch the about menu. For now, this is not possible because
ViTE is not multi-threaded and it parses the file and then shows it.

8.5 Saves of configurations

Maybe, for a trace that you will use a lot of time, you would like to always have
the same filters or anything else preloaded without setting them when you load the
trace. In order to do it, a configuration file by trace could be the solution and be
loaded while the trace is loaded automatically.

8.6 Interface enhancement

The interface will have to have a menu built such as a tree, listing all the containers,
and enabling by selecting one of them, to display only its children.

32

	Introduction
	Convention for making code
	Convention to code

	Parser module
	Parser Paje
	Representation of the file trace line by line
	Representation of the definitions described in the trace file
	Acknowledge of definitions' lines
	Event parser
	Handling of a trace

	Parser OTF
	Introduction
	Implementation
	Supported functions
	Definition Parser
	Event Parser

	Parser ViTE
	Utility of this parser
	How it works

	The data structure
	The Main classes
	The class Trace
	The class container
	The class State
	The class event
	The class Link

	The lists
	The trees
	Algorithms on the trees :
	Browse tree
	Getting informations on a clicked element

	Human-Computer Interface
	The Interface class
	The ViTE notify message system : the Message class
	Console User Interface : class Interface_console
	Description
	How it works
	Managing of the arguments
	Graphical User Interface : class Interface_graphic

	The render system
	The render opengl
	The drawing methods
	The scrolling and scaling methods

	Render out Svg file

	The plugin module
	Overview
	How to build a plugin
	Existing plugins
	The statistic window

	Some possible ameliorations
	Using filters
	Export in another file format
	Allocation by lot
	Reading at the flight
	Saves of configurations
	Interface enhancement

