Geographic Resources Analysis Support System, commonly referred to as GRASS, is a Geographic Information System (GIS) used for geospatial data management and analysis, image processing, graphics/maps production, spatial modeling, and visualization. GRASS is currently used in academic and commercial settings around the world, as well as by many governmental agencies and environmental consulting companies.
This reference manual details the use of modules distributed with Geographic Resources Analysis Support System (GRASS), an open source (GNU GPLed), image processing and geographic information system (GIS).
Go to vector introduction | topicsv.buffer | Creates a buffer around vector features of given type. |
v.build | Creates topology for vector map. |
v.build.polylines | Builds polylines from lines or boundaries. |
v.category | Attaches, deletes or reports vector categories to map geometry. |
v.class | Classifies attribute data, e.g. for thematic mapping |
v.clean | Toolset for cleaning topology of vector map. |
v.cluster | Performs cluster identification. |
v.colors | Creates/modifies the color table associated with a vector map. |
v.colors.out | Exports the color table associated with a vector map. |
v.db.connect | Prints/sets DB connection for a vector map to attribute table. |
v.db.select | Prints vector map attributes. |
v.decimate | Decimates a point cloud |
v.delaunay | Creates a Delaunay triangulation from an input vector map containing points or centroids. |
v.distance | Finds the nearest element in vector map 'to' for elements in vector map 'from'. |
v.drape | Converts 2D vector features to 3D by sampling of elevation raster map. |
v.edit | Edits a vector map, allows adding, deleting and modifying selected vector features. |
v.external | Creates a new pseudo-vector map as a link to an OGR-supported layer or a PostGIS feature table. |
v.external.out | Defines vector output format. |
v.extract | Selects vector features from an existing vector map and creates a new vector map containing only the selected features. |
v.extrude | Extrudes flat vector features to 3D vector features with defined height. |
v.generalize | Performs vector based generalization. |
v.hull | Produces a 2D/3D convex hull for a given vector map. |
v.in.ascii | Creates a vector map from an ASCII points file or ASCII vector file. |
v.in.db | Creates new vector (points) map from database table containing coordinates. |
v.in.dxf | Converts file in DXF format to GRASS vector map. |
v.in.ogr | Imports vector data into a GRASS vector map using OGR library. |
v.in.region | Creates a vector polygon from the current region extent. |
v.info | Outputs basic information about a vector map. |
v.kcv | Randomly partition points into test/train sets. |
v.kernel | Generates a raster density map from vector points map. |
v.label | Creates paint labels for a vector map from attached attributes. |
v.lidar.correction | Corrects the v.lidar.growing output. It is the last of the three algorithms for LIDAR filtering. |
v.lidar.edgedetection | Detects the object's edges from a LIDAR data set. |
v.lidar.growing | Building contour determination and Region Growing algorithm for determining the building inside |
v.lrs.create | Creates a linear reference system. |
v.lrs.label | Creates stationing from input lines, and linear reference system. |
v.lrs.segment | Creates points/segments from input lines, linear reference system and positions read from stdin or a file. |
v.lrs.where | Finds line id and real km+offset for given points in vector map using linear reference system. |
v.mkgrid | Creates a vector map of a user-defined grid. |
v.neighbors | Neighborhood analysis tool for vector point maps. |
v.net.alloc | Allocates subnets for nearest centers (direction from center). |
v.net.allpairs | Computes the shortest path between all pairs of nodes in the network. |
v.net.bridge | Computes bridges and articulation points in the network. |
v.net.centrality | Computes degree, centrality, betweeness, closeness and eigenvector centrality measures in the network. |
v.net.components | Computes strongly and weakly connected components in the network. |
v.net.connectivity | Computes vertex connectivity between two sets of nodes in the network. |
v.net.distance | Computes shortest distance via the network between the given sets of features. |
v.net.flow | Computes the maximum flow between two sets of nodes in the network. |
v.net | Performs network maintenance. |
v.net.iso | Splits net by cost isolines. |
v.net.path | Finds shortest path on vector network. |
v.net.salesman | Creates a cycle connecting given nodes (Traveling salesman problem). |
v.net.spanningtree | Computes minimum spanning tree for the network. |
v.net.steiner | Creates Steiner tree for the network and given terminals. |
v.net.timetable | Finds shortest path using timetables. |
v.net.visibility | Performs visibility graph construction. |
v.normal | Tests for normality for vector points. |
v.out.ascii | Exports a vector map to a GRASS ASCII vector representation. |
v.out.dxf | Exports vector map to DXF file format. |
v.out.ogr | Exports a vector map layer to any of the supported OGR vector formats. |
v.out.postgis | Exports a vector map layer to PostGIS feature table. |
v.out.pov | Converts GRASS x,y,z points to POV-Ray x,z,y format. |
v.out.svg | Exports a vector map to SVG file. |
v.out.vtk | Converts a vector map to VTK ASCII output. |
v.outlier | Removes outliers from vector point data. |
v.overlay | Overlays two vector maps offering clip, intersection, difference, symmetrical difference, union operators. |
v.parallel | Creates parallel line to input vector lines. |
v.patch | Creates a new vector map by combining other vector maps. |
v.perturb | Random location perturbations of vector points. |
v.proj | Re-projects a vector map from one location to the current location. |
v.qcount | Indices for quadrat counts of vector point lists. |
v.random | Generates random 2D/3D vector points. |
v.reclass | Changes vector category values for an existing vector map according to results of SQL queries or a value in attribute table column. |
v.rectify | Rectifies a vector by computing a coordinate transformation for each object in the vector based on the control points. |
v.sample | Samples a raster map at vector point locations. |
v.segment | Creates points/segments from input vector lines and positions. |
v.select | Selects features from vector map (A) by features from other vector map (B). |
v.split | Splits vector lines to shorter segments. |
v.support | Updates vector map metadata. |
v.surf.bspline | Performs bicubic or bilinear spline interpolation with Tykhonov regularization. |
v.surf.idw | Provides surface interpolation from vector point data by Inverse Distance Squared Weighting. |
v.surf.rst | Performs surface interpolation from vector points map by splines. |
v.timestamp | Modifies a timestamp for a vector map. |
v.to.3d | Performs transformation of 2D vector features to 3D. |
v.to.db | Populates attribute values from vector features. |
v.to.points | Creates points along input lines in new vector map with 2 layers. |
v.to.rast | Converts (rasterize) a vector map into a raster map. |
v.to.rast3 | Converts a vector map (only points) into a 3D raster map. |
v.transform | Performs an affine transformation (shift, scale and rotate) on vector map. |
v.type | Changes type of vector features. |
v.univar | Calculates univariate statistics of vector map features. |
v.vect.stats | Count points in areas, calculate statistics from point attributes. |
v.vol.rst | Interpolates point data to a 3D raster map using regularized spline with tension (RST) algorithm. |
v.voronoi | Creates a Voronoi diagram in current region from an input vector map containing points or centroids. |
v.what | Queries a vector map at given locations. |
v.what.rast | Uploads raster values at positions of vector points to the table. |
v.what.rast3 | Uploads 3D raster values at positions of vector points to the table. |
Main index | Topics index | Keywords index | Graphical index | Full index
© 2003-2018 GRASS Development Team, GRASS GIS 7.2.3 Reference Manual