Alexandria 2.31.0
SDC-CH common library for the Euclid project
Loading...
Searching...
No Matches
function_tools.h
Go to the documentation of this file.
1/*
2 * Copyright (C) 2012-2021 Euclid Science Ground Segment
3 *
4 * This library is free software; you can redistribute it and/or modify it under
5 * the terms of the GNU Lesser General Public License as published by the Free
6 * Software Foundation; either version 3.0 of the License, or (at your option)
7 * any later version.
8 *
9 * This library is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11 * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
12 * details.
13 *
14 * You should have received a copy of the GNU Lesser General Public License
15 * along with this library; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
25#ifndef MATHUTILS_FUNCTION_TOOLS_H
26#define MATHUTILS_FUNCTION_TOOLS_H
27
29
31
32namespace Euclid {
33namespace MathUtils {
34
45
46public:
48 virtual ~NumericalIntegrationScheme() = default;
49
56 virtual double operator()(const Function& function, double min, double max) = 0;
57};
58
73ELEMENTS_API double integrate(const Function& function, const double min, const double max,
75
85
86} // namespace MathUtils
87} // end of namespace Euclid
88
89#endif /* MATHUTILS_FUNCTION_TOOLS_H */
Interface class representing a function with an arbitrary number of parameters.
Definition Function.h:104
Interface class representing a numerical integration scheme.
virtual ~NumericalIntegrationScheme()=default
Default destructor.
virtual double operator()(const Function &function, double min, double max)=0
#define ELEMENTS_API
ELEMENTS_API double integrate(const Function &function, const double min, const double max, std::unique_ptr< NumericalIntegrationScheme > numericalIntegrationScheme=nullptr)
ELEMENTS_API std::unique_ptr< Function > multiply(const Function &f1, const Function &f2)