{
“cells”: [
{

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“# Surface animationsn”, “n”, “Here we show how to make animations of surface plots.n”, “n”, “First we need some imports:”

]

}, {

“cell_type”: “code”, “execution_count”: 1, “metadata”: {}, “outputs”: [], “source”: [

“%matplotlib notebookn”, “import numpy as npn”, “import matplotlib.pyplot as pltn”, “import animatplot as amp”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Let’s use: $z = \sin(x^2+y^2-t)$.n”, “n”, “First, we generate the data.”

]

}, {

“cell_type”: “code”, “execution_count”: 2, “metadata”: {}, “outputs”: [], “source”: [

“x = np.linspace(-2, 2, 41)n”, “y = np.linspace(-2, 2, 41)n”, “t = np.linspace(0, 2 * np.pi, 30)n”, “n”, “X, Y, T = np.meshgrid(x, y, t)n”, “n”, “data = np.sin(X * X + Y * Y - T)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“We need to be careful here. Our time axis is the last axis of our data, but animatplot assumes it is the first axis by default. Fortunately, we can use the `t_axis` argument.n”, “n”, “We need to create a special Axes object with a 3d projection to make surface animations. Here we do this by using plt.subplots(subplot_kw={"projection": "3d"}). In more complicated situations, you might need to pass an axes argument for various subplots, but here we only have one subplot, so we do not need to pass in the axes as animatplot can pick them up using plt.gca().”

]

}, {

“cell_type”: “code”, “execution_count”: 3, “metadata”: {

“scrolled”: false

}, “outputs”: [

{
“data”: {
“application/javascript”: [

“/* Put everything inside the global mpl namespace /n”, “/ global mpl /n”, “window.mpl = {};n”, “n”, “mpl.get_websocket_type = function () {n”, “ if (typeof WebSocket !== ‘undefined’) {n”, “ return WebSocket;n”, “ } else if (typeof MozWebSocket !== ‘undefined’) {n”, “ return MozWebSocket;n”, “ } else {n”, “ alert(n”, “ ‘Your browser does not have WebSocket support. ‘ +n”, “ ‘Please try Chrome, Safari or Firefox ≥ 6. ‘ +n”, “ ‘Firefox 4 and 5 are also supported but you ‘ +n”, “ ‘have to enable WebSockets in about:config.’n”, “ );n”, “ }n”, “};n”, “n”, “mpl.figure = function (figure_id, websocket, ondownload, parent_element) {n”, “ this.id = figure_id;n”, “n”, “ this.ws = websocket;n”, “n”, “ this.supports_binary = this.ws.binaryType !== undefined;n”, “n”, “ if (!this.supports_binary) {n”, “ var warnings = document.getElementById(‘mpl-warnings’);n”, “ if (warnings) {n”, “ warnings.style.display = ‘block’;n”, “ warnings.textContent =n”, “ ‘This browser does not support binary websocket messages. ‘ +n”, “ ‘Performance may be slow.’;n”, “ }n”, “ }n”, “n”, “ this.imageObj = new Image();n”, “n”, “ this.context = undefined;n”, “ this.message = undefined;n”, “ this.canvas = undefined;n”, “ this.rubberband_canvas = undefined;n”, “ this.rubberband_context = undefined;n”, “ this.format_dropdown = undefined;n”, “n”, “ this.image_mode = ‘full’;n”, “n”, “ this.root = document.createElement(‘div’);n”, “ this.root.setAttribute(‘style’, ‘display: inline-block’);n”, “ this._root_extra_style(this.root);n”, “n”, “ parent_element.appendChild(this.root);n”, “n”, “ this._init_header(this);n”, “ this._init_canvas(this);n”, “ this._init_toolbar(this);n”, “n”, “ var fig = this;n”, “n”, “ this.waiting = false;n”, “n”, “ this.ws.onopen = function () {n”, “ fig.send_message(‘supports_binary’, { value: fig.supports_binary });n”, “ fig.send_message(‘send_image_mode’, {});n”, “ if (fig.ratio !== 1) {n”, “ fig.send_message(‘set_dpi_ratio’, { dpi_ratio: fig.ratio });n”, “ }n”, “ fig.send_message(‘refresh’, {});n”, “ };n”, “n”, “ this.imageObj.onload = function () {n”, “ if (fig.image_mode === ‘full’) {n”, “ // Full images could contain transparency (where diff imagesn”, “ // almost always do), so we need to clear the canvas so thatn”, “ // there is no ghosting.n”, “ fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);n”, “ }n”, “ fig.context.drawImage(fig.imageObj, 0, 0);n”, “ };n”, “n”, “ this.imageObj.onunload = function () {n”, “ fig.ws.close();n”, “ };n”, “n”, “ this.ws.onmessage = this._make_on_message_function(this);n”, “n”, “ this.ondownload = ondownload;n”, “};n”, “n”, “mpl.figure.prototype._init_header = function () {n”, “ var titlebar = document.createElement(‘div’);n”, “ titlebar.classList =n”, “ ‘ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix’;n”, “ var titletext = document.createElement(‘div’);n”, “ titletext.classList = ‘ui-dialog-title’;n”, “ titletext.setAttribute(n”, “ ‘style’,n”, “ ‘width: 100%; text-align: center; padding: 3px;’n”, “ );n”, “ titlebar.appendChild(titletext);n”, “ this.root.appendChild(titlebar);n”, “ this.header = titletext;n”, “};n”, “n”, “mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};n”, “n”, “mpl.figure.prototype._root_extra_style = function (_canvas_div) {};n”, “n”, “mpl.figure.prototype._init_canvas = function () {n”, “ var fig = this;n”, “n”, “ var canvas_div = (this.canvas_div = document.createElement(‘div’));n”, “ canvas_div.setAttribute(n”, “ ‘style’,n”, “ ‘border: 1px solid #ddd;’ +n”, “ ‘box-sizing: content-box;’ +n”, “ ‘clear: both;’ +n”, “ ‘min-height: 1px;’ +n”, “ ‘min-width: 1px;’ +n”, “ ‘outline: 0;’ +n”, “ ‘overflow: hidden;’ +n”, “ ‘position: relative;’ +n”, “ ‘resize: both;’n”, “ );n”, “n”, “ function on_keyboard_event_closure(name) {n”, “ return function (event) {n”, “ return fig.key_event(event, name);n”, “ };n”, “ }n”, “n”, “ canvas_div.addEventListener(n”, “ ‘keydown’,n”, “ on_keyboard_event_closure(‘key_press’)n”, “ );n”, “ canvas_div.addEventListener(n”, “ ‘keyup’,n”, “ on_keyboard_event_closure(‘key_release’)n”, “ );n”, “n”, “ this._canvas_extra_style(canvas_div);n”, “ this.root.appendChild(canvas_div);n”, “n”, “ var canvas = (this.canvas = document.createElement(‘canvas’));n”, “ canvas.classList.add(‘mpl-canvas’);n”, “ canvas.setAttribute(‘style’, ‘box-sizing: content-box;’);n”, “n”, “ this.context = canvas.getContext(‘2d’);n”, “n”, “ var backingStore =n”, “ this.context.backingStorePixelRatio ||n”, “ this.context.webkitBackingStorePixelRatio ||n”, “ this.context.mozBackingStorePixelRatio ||n”, “ this.context.msBackingStorePixelRatio ||n”, “ this.context.oBackingStorePixelRatio ||n”, “ this.context.backingStorePixelRatio ||n”, “ 1;n”, “n”, “ this.ratio = (window.devicePixelRatio || 1) / backingStore;n”, “n”, “ var rubberband_canvas = (this.rubberband_canvas = document.createElement(n”, “ ‘canvas’n”, “ ));n”, “ rubberband_canvas.setAttribute(n”, “ ‘style’,n”, “ ‘box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;’n”, “ );n”, “n”, “ // Apply a ponyfill if ResizeObserver is not implemented by browser.n”, “ if (this.ResizeObserver === undefined) {n”, “ if (window.ResizeObserver !== undefined) {n”, “ this.ResizeObserver = window.ResizeObserver;n”, “ } else {n”, “ var obs = _JSXTOOLS_RESIZE_OBSERVER({});n”, “ this.ResizeObserver = obs.ResizeObserver;n”, “ }n”, “ }n”, “n”, “ this.resizeObserverInstance = new this.ResizeObserver(function (entries) {n”, “ var nentries = entries.length;n”, “ for (var i = 0; i < nentries; i++) {n”, “ var entry = entries[i];n”, “ var width, height;n”, “ if (entry.contentBoxSize) {n”, “ if (entry.contentBoxSize instanceof Array) {n”, “ // Chrome 84 implements new version of spec.n”, “ width = entry.contentBoxSize[0].inlineSize;n”, “ height = entry.contentBoxSize[0].blockSize;n”, “ } else {n”, “ // Firefox implements old version of spec.n”, “ width = entry.contentBoxSize.inlineSize;n”, “ height = entry.contentBoxSize.blockSize;n”, “ }n”, “ } else {n”, “ // Chrome <84 implements even older version of spec.n”, “ width = entry.contentRect.width;n”, “ height = entry.contentRect.height;n”, “ }n”, “n”, “ // Keep the size of the canvas and rubber band canvas in sync withn”, “ // the canvas container.n”, “ if (entry.devicePixelContentBoxSize) {n”, “ // Chrome 84 implements new version of spec.n”, “ canvas.setAttribute(n”, “ ‘width’,n”, “ entry.devicePixelContentBoxSize[0].inlineSizen”, “ );n”, “ canvas.setAttribute(n”, “ ‘height’,n”, “ entry.devicePixelContentBoxSize[0].blockSizen”, “ );n”, “ } else {n”, “ canvas.setAttribute(‘width’, width * fig.ratio);n”, “ canvas.setAttribute(‘height’, height * fig.ratio);n”, “ }n”, “ canvas.setAttribute(n”, “ ‘style’,n”, “ ‘width: ‘ + width + ‘px; height: ‘ + height + ‘px;’n”, “ );n”, “n”, “ rubberband_canvas.setAttribute(‘width’, width);n”, “ rubberband_canvas.setAttribute(‘height’, height);n”, “n”, “ // And update the size in Python. We ignore the initial 0/0 sizen”, “ // that occurs as the element is placed into the DOM, which shouldn”, “ // otherwise not happen due to the minimum size styling.n”, “ if (fig.ws.readyState == 1 && width != 0 && height != 0) {n”, “ fig.request_resize(width, height);n”, “ }n”, “ }n”, “ });n”, “ this.resizeObserverInstance.observe(canvas_div);n”, “n”, “ function on_mouse_event_closure(name) {n”, “ return function (event) {n”, “ return fig.mouse_event(event, name);n”, “ };n”, “ }n”, “n”, “ rubberband_canvas.addEventListener(n”, “ ‘mousedown’,n”, “ on_mouse_event_closure(‘button_press’)n”, “ );n”, “ rubberband_canvas.addEventListener(n”, “ ‘mouseup’,n”, “ on_mouse_event_closure(‘button_release’)n”, “ );n”, “ rubberband_canvas.addEventListener(n”, “ ‘dblclick’,n”, “ on_mouse_event_closure(‘dblclick’)n”, “ );n”, “ // Throttle sequential mouse events to 1 every 20ms.n”, “ rubberband_canvas.addEventListener(n”, “ ‘mousemove’,n”, “ on_mouse_event_closure(‘motion_notify’)n”, “ );n”, “n”, “ rubberband_canvas.addEventListener(n”, “ ‘mouseenter’,n”, “ on_mouse_event_closure(‘figure_enter’)n”, “ );n”, “ rubberband_canvas.addEventListener(n”, “ ‘mouseleave’,n”, “ on_mouse_event_closure(‘figure_leave’)n”, “ );n”, “n”, “ canvas_div.addEventListener(‘wheel’, function (event) {n”, “ if (event.deltaY < 0) {n”, “ event.step = 1;n”, “ } else {n”, “ event.step = -1;n”, “ }n”, “ on_mouse_event_closure(‘scroll’)(event);n”, “ });n”, “n”, “ canvas_div.appendChild(canvas);n”, “ canvas_div.appendChild(rubberband_canvas);n”, “n”, “ this.rubberband_context = rubberband_canvas.getContext(‘2d’);n”, “ this.rubberband_context.strokeStyle = ‘#000000’;n”, “n”, “ this._resize_canvas = function (width, height, forward) {n”, “ if (forward) {n”, “ canvas_div.style.width = width + ‘px’;n”, “ canvas_div.style.height = height + ‘px’;n”, “ }n”, “ };n”, “n”, “ // Disable right mouse context menu.n”, “ this.rubberband_canvas.addEventListener(‘contextmenu’, function (_e) {n”, “ event.preventDefault();n”, “ return false;n”, “ });n”, “n”, “ function set_focus() {n”, “ canvas.focus();n”, “ canvas_div.focus();n”, “ }n”, “n”, “ window.setTimeout(set_focus, 100);n”, “};n”, “n”, “mpl.figure.prototype._init_toolbar = function () {n”, “ var fig = this;n”, “n”, “ var toolbar = document.createElement(‘div’);n”, “ toolbar.classList = ‘mpl-toolbar’;n”, “ this.root.appendChild(toolbar);n”, “n”, “ function on_click_closure(name) {n”, “ return function (_event) {n”, “ return fig.toolbar_button_onclick(name);n”, “ };n”, “ }n”, “n”, “ function on_mouseover_closure(tooltip) {n”, “ return function (event) {n”, “ if (!event.currentTarget.disabled) {n”, “ return fig.toolbar_button_onmouseover(tooltip);n”, “ }n”, “ };n”, “ }n”, “n”, “ fig.buttons = {};n”, “ var buttonGroup = document.createElement(‘div’);n”, “ buttonGroup.classList = ‘mpl-button-group’;n”, “ for (var toolbar_ind in mpl.toolbar_items) {n”, “ var name = mpl.toolbar_items[toolbar_ind][0];n”, “ var tooltip = mpl.toolbar_items[toolbar_ind][1];n”, “ var image = mpl.toolbar_items[toolbar_ind][2];n”, “ var method_name = mpl.toolbar_items[toolbar_ind][3];n”, “n”, “ if (!name) {n”, “ / Instead of a spacer, we start a new button group. /n”, “ if (buttonGroup.hasChildNodes()) {n”, “ toolbar.appendChild(buttonGroup);n”, “ }n”, “ buttonGroup = document.createElement(‘div’);n”, “ buttonGroup.classList = ‘mpl-button-group’;n”, “ continue;n”, “ }n”, “n”, “ var button = (fig.buttons[name] = document.createElement(‘button’));n”, “ button.classList = ‘mpl-widget’;n”, “ button.setAttribute(‘role’, ‘button’);n”, “ button.setAttribute(‘aria-disabled’, ‘false’);n”, “ button.addEventListener(‘click’, on_click_closure(method_name));n”, “ button.addEventListener(‘mouseover’, on_mouseover_closure(tooltip));n”, “n”, “ var icon_img = document.createElement(‘img’);n”, “ icon_img.src = ‘_images/’ + image + ‘.png’;n”, “ icon_img.srcset = ‘_images/’ + image + ‘_large.png 2x’;n”, “ icon_img.alt = tooltip;n”, “ button.appendChild(icon_img);n”, “n”, “ buttonGroup.appendChild(button);n”, “ }n”, “n”, “ if (buttonGroup.hasChildNodes()) {n”, “ toolbar.appendChild(buttonGroup);n”, “ }n”, “n”, “ var fmt_picker = document.createElement(‘select’);n”, “ fmt_picker.classList = ‘mpl-widget’;n”, “ toolbar.appendChild(fmt_picker);n”, “ this.format_dropdown = fmt_picker;n”, “n”, “ for (var ind in mpl.extensions) {n”, “ var fmt = mpl.extensions[ind];n”, “ var option = document.createElement(‘option’);n”, “ option.selected = fmt === mpl.default_extension;n”, “ option.innerHTML = fmt;n”, “ fmt_picker.appendChild(option);n”, “ }n”, “n”, “ var status_bar = document.createElement(‘span’);n”, “ status_bar.classList = ‘mpl-message’;n”, “ toolbar.appendChild(status_bar);n”, “ this.message = status_bar;n”, “};n”, “n”, “mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {n”, “ // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,n”, “ // which will in turn request a refresh of the image.n”, “ this.send_message(‘resize’, { width: x_pixels, height: y_pixels });n”, “};n”, “n”, “mpl.figure.prototype.send_message = function (type, properties) {n”, “ properties[‘type’] = type;n”, “ properties[‘figure_id’] = this.id;n”, “ this.ws.send(JSON.stringify(properties));n”, “};n”, “n”, “mpl.figure.prototype.send_draw_message = function () {n”, “ if (!this.waiting) {n”, “ this.waiting = true;n”, “ this.ws.send(JSON.stringify({ type: ‘draw’, figure_id: this.id }));n”, “ }n”, “};n”, “n”, “mpl.figure.prototype.handle_save = function (fig, _msg) {n”, “ var format_dropdown = fig.format_dropdown;n”, “ var format = format_dropdown.options[format_dropdown.selectedIndex].value;n”, “ fig.ondownload(fig, format);n”, “};n”, “n”, “mpl.figure.prototype.handle_resize = function (fig, msg) {n”, “ var size = msg[‘size’];n”, “ if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {n”, “ fig._resize_canvas(size[0], size[1], msg[‘forward’]);n”, “ fig.send_message(‘refresh’, {});n”, “ }n”, “};n”, “n”, “mpl.figure.prototype.handle_rubberband = function (fig, msg) {n”, “ var x0 = msg[‘x0’] / fig.ratio;n”, “ var y0 = (fig.canvas.height - msg[‘y0’]) / fig.ratio;n”, “ var x1 = msg[‘x1’] / fig.ratio;n”, “ var y1 = (fig.canvas.height - msg[‘y1’]) / fig.ratio;n”, “ x0 = Math.floor(x0) + 0.5;n”, “ y0 = Math.floor(y0) + 0.5;n”, “ x1 = Math.floor(x1) + 0.5;n”, “ y1 = Math.floor(y1) + 0.5;n”, “ var min_x = Math.min(x0, x1);n”, “ var min_y = Math.min(y0, y1);n”, “ var width = Math.abs(x1 - x0);n”, “ var height = Math.abs(y1 - y0);n”, “n”, “ fig.rubberband_context.clearRect(n”, “ 0,n”, “ 0,n”, “ fig.canvas.width / fig.ratio,n”, “ fig.canvas.height / fig.ration”, “ );n”, “n”, “ fig.rubberband_context.strokeRect(min_x, min_y, width, height);n”, “};n”, “n”, “mpl.figure.prototype.handle_figure_label = function (fig, msg) {n”, “ // Updates the figure title.n”, “ fig.header.textContent = msg[‘label’];n”, “};n”, “n”, “mpl.figure.prototype.handle_cursor = function (fig, msg) {n”, “ var cursor = msg[‘cursor’];n”, “ switch (cursor) {n”, “ case 0:n”, “ cursor = ‘pointer’;n”, “ break;n”, “ case 1:n”, “ cursor = ‘default’;n”, “ break;n”, “ case 2:n”, “ cursor = ‘crosshair’;n”, “ break;n”, “ case 3:n”, “ cursor = ‘move’;n”, “ break;n”, “ }n”, “ fig.rubberband_canvas.style.cursor = cursor;n”, “};n”, “n”, “mpl.figure.prototype.handle_message = function (fig, msg) {n”, “ fig.message.textContent = msg[‘message’];n”, “};n”, “n”, “mpl.figure.prototype.handle_draw = function (fig, _msg) {n”, “ // Request the server to send over a new figure.n”, “ fig.send_draw_message();n”, “};n”, “n”, “mpl.figure.prototype.handle_image_mode = function (fig, msg) {n”, “ fig.image_mode = msg[‘mode’];n”, “};n”, “n”, “mpl.figure.prototype.handle_history_buttons = function (fig, msg) {n”, “ for (var key in msg) {n”, “ if (!(key in fig.buttons)) {n”, “ continue;n”, “ }n”, “ fig.buttons[key].disabled = !msg[key];n”, “ fig.buttons[key].setAttribute(‘aria-disabled’, !msg[key]);n”, “ }n”, “};n”, “n”, “mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {n”, “ if (msg[‘mode’] === ‘PAN’) {n”, “ fig.buttons[‘Pan’].classList.add(‘active’);n”, “ fig.buttons[‘Zoom’].classList.remove(‘active’);n”, “ } else if (msg[‘mode’] === ‘ZOOM’) {n”, “ fig.buttons[‘Pan’].classList.remove(‘active’);n”, “ fig.buttons[‘Zoom’].classList.add(‘active’);n”, “ } else {n”, “ fig.buttons[‘Pan’].classList.remove(‘active’);n”, “ fig.buttons[‘Zoom’].classList.remove(‘active’);n”, “ }n”, “};n”, “n”, “mpl.figure.prototype.updated_canvas_event = function () {n”, “ // Called whenever the canvas gets updated.n”, “ this.send_message(‘ack’, {});n”, “};n”, “n”, “// A function to construct a web socket function for onmessage handling.n”, “// Called in the figure constructor.n”, “mpl.figure.prototype._make_on_message_function = function (fig) {n”, “ return function socket_on_message(evt) {n”, “ if (evt.data instanceof Blob) {n”, “ var img = evt.data;n”, “ if (img.type !== ‘image/png’) {n”, “ / FIXME: We get "Resource interpreted as Image butn”, “ * transferred with MIME type text/plain:" errors onn”, “ * Chrome. But how to set the MIME type? It doesn’t seemn”, “ * to be part of the websocket stream /n”, “ img.type = ‘image/png’;n”, “ }n”, “n”, “ / Free the memory for the previous frames /n”, “ if (fig.imageObj.src) {n”, “ (window.URL || window.webkitURL).revokeObjectURL(n”, “ fig.imageObj.srcn”, “ );n”, “ }n”, “n”, “ fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(n”, “ imgn”, “ );n”, “ fig.updated_canvas_event();n”, “ fig.waiting = false;n”, “ return;n”, “ } else if (n”, “ typeof evt.data === ‘string’ &&n”, “ evt.data.slice(0, 21) === ‘data:image/png;base64’n”, “ ) {n”, “ fig.imageObj.src = evt.data;n”, “ fig.updated_canvas_event();n”, “ fig.waiting = false;n”, “ return;n”, “ }n”, “n”, “ var msg = JSON.parse(evt.data);n”, “ var msg_type = msg[‘type’];n”, “n”, “ // Call the "handle_{type}" callback, which takesn”, “ // the figure and JSON message as its only arguments.n”, “ try {n”, “ var callback = fig[‘handle_’ + msg_type];n”, “ } catch (e) {n”, “ console.log(n”, “ "No handler for the ‘" + msg_type + "’ message type: ",n”, “ msgn”, “ );n”, “ return;n”, “ }n”, “n”, “ if (callback) {n”, “ try {n”, “ // console.log("Handling ‘" + msg_type + "’ message: ", msg);n”, “ callback(fig, msg);n”, “ } catch (e) {n”, “ console.log(n”, “ "Exception inside the ‘handler_" + msg_type + "’ callback:",n”, “ e,n”, “ e.stack,n”, “ msgn”, “ );n”, “ }n”, “ }n”, “ };n”, “};n”, “n”, “// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvasn”, “mpl.findpos = function (e) {n”, “ //this section is from http://www.quirksmode.org/js/events_properties.htmln”, “ var targ;n”, “ if (!e) {n”, “ e = window.event;n”, “ }n”, “ if (e.target) {n”, “ targ = e.target;n”, “ } else if (e.srcElement) {n”, “ targ = e.srcElement;n”, “ }n”, “ if (targ.nodeType === 3) {n”, “ // defeat Safari bugn”, “ targ = targ.parentNode;n”, “ }n”, “n”, “ // pageX,Y are the mouse positions relative to the documentn”, “ var boundingRect = targ.getBoundingClientRect();n”, “ var x = e.pageX - (boundingRect.left + document.body.scrollLeft);n”, “ var y = e.pageY - (boundingRect.top + document.body.scrollTop);n”, “n”, “ return { x: x, y: y };n”, “};n”, “n”, “/n”, “ * return a copy of an object with only non-object keysn”, “ * we need this to avoid circular referencesn”, “ * http://stackoverflow.com/a/24161582/3208463n”, “ /n”, “function simpleKeys(original) {n”, “ return Object.keys(original).reduce(function (obj, key) {n”, “ if (typeof original[key] !== ‘object’) {n”, “ obj[key] = original[key];n”, “ }n”, “ return obj;n”, “ }, {});n”, “}n”, “n”, “mpl.figure.prototype.mouse_event = function (event, name) {n”, “ var canvas_pos = mpl.findpos(event);n”, “n”, “ if (name === ‘button_press’) {n”, “ this.canvas.focus();n”, “ this.canvas_div.focus();n”, “ }n”, “n”, “ var x = canvas_pos.x * this.ratio;n”, “ var y = canvas_pos.y * this.ratio;n”, “n”, “ this.send_message(name, {n”, “ x: x,n”, “ y: y,n”, “ button: event.button,n”, “ step: event.step,n”, “ guiEvent: simpleKeys(event),n”, “ });n”, “n”, “ / This prevents the web browser from automatically changing ton”, “ * the text insertion cursor when the button is pressed. We wantn”, “ * to control all of the cursor setting manually through then”, “ * ‘cursor’ event from matplotlib /n”, “ event.preventDefault();n”, “ return false;n”, “};n”, “n”, “mpl.figure.prototype._key_event_extra = function (_event, _name) {n”, “ // Handle any extra behaviour associated with a key eventn”, “};n”, “n”, “mpl.figure.prototype.key_event = function (event, name) {n”, “ // Prevent repeat eventsn”, “ if (name === ‘key_press’) {n”, “ if (event.key === this._key) {n”, “ return;n”, “ } else {n”, “ this._key = event.key;n”, “ }n”, “ }n”, “ if (name === ‘key_release’) {n”, “ this._key = null;n”, “ }n”, “n”, “ var value = ‘’;n”, “ if (event.ctrlKey && event.key !== ‘Control’) {n”, “ value += ‘ctrl+’;n”, “ }n”, “ else if (event.altKey && event.key !== ‘Alt’) {n”, “ value += ‘alt+’;n”, “ }n”, “ else if (event.shiftKey && event.key !== ‘Shift’) {n”, “ value += ‘shift+’;n”, “ }n”, “n”, “ value += ‘k’ + event.key;n”, “n”, “ this._key_event_extra(event, name);n”, “n”, “ this.send_message(name, { key: value, guiEvent: simpleKeys(event) });n”, “ return false;n”, “};n”, “n”, “mpl.figure.prototype.toolbar_button_onclick = function (name) {n”, “ if (name === ‘download’) {n”, “ this.handle_save(this, null);n”, “ } else {n”, “ this.send_message(‘toolbar_button’, { name: name });n”, “ }n”, “};n”, “n”, “mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {n”, “ this.message.textContent = tooltip;n”, “};n”, “n”, “///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////n”, “// prettier-ignoren”, “var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError("Constructor requires ‘new’ operator");i.set(this,e)}function h(){throw new TypeError("Function is not a constructor")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-linen”, “mpl.toolbar_items = [["Home", "Reset original view", "fa fa-home icon-home", "home"], ["Back", "Back to previous view", "fa fa-arrow-left icon-arrow-left", "back"], ["Forward", "Forward to next view", "fa fa-arrow-right icon-arrow-right", "forward"], ["", "", "", ""], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "fa fa-arrows icon-move", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis, CTRL fixes aspect", "fa fa-square-o icon-check-empty", "zoom"], ["", "", "", ""], ["Download", "Download plot", "fa fa-floppy-o icon-save", "download"]];n”, “n”, “mpl.extensions = ["eps", "jpeg", "pgf", "pdf", "png", "ps", "raw", "svg", "tif"];n”, “n”, “mpl.default_extension = "png";/ global mpl /n”, “n”, “var comm_websocket_adapter = function (comm) {n”, “ // Create a "websocket"-like object which calls the given IPython commn”, “ // object with the appropriate methods. Currently this is a non binaryn”, “ // socket, so there is still some room for performance tuning.n”, “ var ws = {};n”, “n”, “ ws.binaryType = comm.kernel.ws.binaryType;n”, “ ws.readyState = comm.kernel.ws.readyState;n”, “ function updateReadyState(_event) {n”, “ if (comm.kernel.ws) {n”, “ ws.readyState = comm.kernel.ws.readyState;n”, “ } else {n”, “ ws.readyState = 3; // Closed state.n”, “ }n”, “ }n”, “ comm.kernel.ws.addEventListener(‘open’, updateReadyState);n”, “ comm.kernel.ws.addEventListener(‘close’, updateReadyState);n”, “ comm.kernel.ws.addEventListener(‘error’, updateReadyState);n”, “n”, “ ws.close = function () {n”, “ comm.close();n”, “ };n”, “ ws.send = function (m) {n”, “ //console.log(‘sending’, m);n”, “ comm.send(m);n”, “ };n”, “ // Register the callback with on_msg.n”, “ comm.on_msg(function (msg) {n”, “ //console.log(‘receiving’, msg[‘content’][‘data’], msg);n”, “ var data = msg[‘content’][‘data’];n”, “ if (data[‘blob’] !== undefined) {n”, “ data = {n”, “ data: new Blob(msg[‘buffers’], { type: data[‘blob’] }),n”, “ };n”, “ }n”, “ // Pass the mpl event to the overridden (by mpl) onmessage function.n”, “ ws.onmessage(data);n”, “ });n”, “ return ws;n”, “};n”, “n”, “mpl.mpl_figure_comm = function (comm, msg) {n”, “ // This is the function which gets called when the mpl processn”, “ // starts-up an IPython Comm through the "matplotlib" channel.n”, “n”, “ var id = msg.content.data.id;n”, “ // Get hold of the div created by the display call when the Commn”, “ // socket was opened in Python.n”, “ var element = document.getElementById(id);n”, “ var ws_proxy = comm_websocket_adapter(comm);n”, “n”, “ function ondownload(figure, _format) {n”, “ window.open(figure.canvas.toDataURL());n”, “ }n”, “n”, “ var fig = new mpl.figure(id, ws_proxy, ondownload, element);n”, “n”, “ // Call onopen now - mpl needs it, as it is assuming we’ve passed it a realn”, “ // web socket which is closed, not our websocket->open comm proxy.n”, “ ws_proxy.onopen();n”, “n”, “ fig.parent_element = element;n”, “ fig.cell_info = mpl.find_output_cell("<div id=’" + id + "’></div>");n”, “ if (!fig.cell_info) {n”, “ console.error(‘Failed to find cell for figure’, id, fig);n”, “ return;n”, “ }n”, “ fig.cell_info[0].output_area.element.on(n”, “ ‘cleared’,n”, “ { fig: fig },n”, “ fig._remove_fig_handlern”, “ );n”, “};n”, “n”, “mpl.figure.prototype.handle_close = function (fig, msg) {n”, “ var width = fig.canvas.width / fig.ratio;n”, “ fig.cell_info[0].output_area.element.off(n”, “ ‘cleared’,n”, “ fig._remove_fig_handlern”, “ );n”, “ fig.resizeObserverInstance.unobserve(fig.canvas_div);n”, “n”, “ // Update the output cell to use the data from the current canvas.n”, “ fig.push_to_output();n”, “ var dataURL = fig.canvas.toDataURL();n”, “ // Re-enable the keyboard manager in IPython - without this line, in FF,n”, “ // the notebook keyboard shortcuts fail.n”, “ IPython.keyboard_manager.enable();n”, “ fig.parent_element.innerHTML =n”, “ ‘<img src="’ + dataURL + ‘" width="’ + width + ‘">’;n”, “ fig.close_ws(fig, msg);n”, “};n”, “n”, “mpl.figure.prototype.close_ws = function (fig, msg) {n”, “ fig.send_message(‘closing’, msg);n”, “ // fig.ws.close()n”, “};n”, “n”, “mpl.figure.prototype.push_to_output = function (_remove_interactive) {n”, “ // Turn the data on the canvas into data in the output cell.n”, “ var width = this.canvas.width / this.ratio;n”, “ var dataURL = this.canvas.toDataURL();n”, “ this.cell_info[1][‘text/html’] =n”, “ ‘<img src="’ + dataURL + ‘" width="’ + width + ‘">’;n”, “};n”, “n”, “mpl.figure.prototype.updated_canvas_event = function () {n”, “ // Tell IPython that the notebook contents must change.n”, “ IPython.notebook.set_dirty(true);n”, “ this.send_message(‘ack’, {});n”, “ var fig = this;n”, “ // Wait a second, then push the new image to the DOM son”, “ // that it is saved nicely (might be nice to debounce this).n”, “ setTimeout(function () {n”, “ fig.push_to_output();n”, “ }, 1000);n”, “};n”, “n”, “mpl.figure.prototype._init_toolbar = function () {n”, “ var fig = this;n”, “n”, “ var toolbar = document.createElement(‘div’);n”, “ toolbar.classList = ‘btn-toolbar’;n”, “ this.root.appendChild(toolbar);n”, “n”, “ function on_click_closure(name) {n”, “ return function (_event) {n”, “ return fig.toolbar_button_onclick(name);n”, “ };n”, “ }n”, “n”, “ function on_mouseover_closure(tooltip) {n”, “ return function (event) {n”, “ if (!event.currentTarget.disabled) {n”, “ return fig.toolbar_button_onmouseover(tooltip);n”, “ }n”, “ };n”, “ }n”, “n”, “ fig.buttons = {};n”, “ var buttonGroup = document.createElement(‘div’);n”, “ buttonGroup.classList = ‘btn-group’;n”, “ var button;n”, “ for (var toolbar_ind in mpl.toolbar_items) {n”, “ var name = mpl.toolbar_items[toolbar_ind][0];n”, “ var tooltip = mpl.toolbar_items[toolbar_ind][1];n”, “ var image = mpl.toolbar_items[toolbar_ind][2];n”, “ var method_name = mpl.toolbar_items[toolbar_ind][3];n”, “n”, “ if (!name) {n”, “ / Instead of a spacer, we start a new button group. /n”, “ if (buttonGroup.hasChildNodes()) {n”, “ toolbar.appendChild(buttonGroup);n”, “ }n”, “ buttonGroup = document.createElement(‘div’);n”, “ buttonGroup.classList = ‘btn-group’;n”, “ continue;n”, “ }n”, “n”, “ button = fig.buttons[name] = document.createElement(‘button’);n”, “ button.classList = ‘btn btn-default’;n”, “ button.href = ‘#’;n”, “ button.title = name;n”, “ button.innerHTML = ‘<i class="fa ‘ + image + ‘ fa-lg"></i>’;n”, “ button.addEventListener(‘click’, on_click_closure(method_name));n”, “ button.addEventListener(‘mouseover’, on_mouseover_closure(tooltip));n”, “ buttonGroup.appendChild(button);n”, “ }n”, “n”, “ if (buttonGroup.hasChildNodes()) {n”, “ toolbar.appendChild(buttonGroup);n”, “ }n”, “n”, “ // Add the status bar.n”, “ var status_bar = document.createElement(‘span’);n”, “ status_bar.classList = ‘mpl-message pull-right’;n”, “ toolbar.appendChild(status_bar);n”, “ this.message = status_bar;n”, “n”, “ // Add the close button to the window.n”, “ var buttongrp = document.createElement(‘div’);n”, “ buttongrp.classList = ‘btn-group inline pull-right’;n”, “ button = document.createElement(‘button’);n”, “ button.classList = ‘btn btn-mini btn-primary’;n”, “ button.href = ‘#’;n”, “ button.title = ‘Stop Interaction’;n”, “ button.innerHTML = ‘<i class="fa fa-power-off icon-remove icon-large"></i>’;n”, “ button.addEventListener(‘click’, function (_evt) {n”, “ fig.handle_close(fig, {});n”, “ });n”, “ button.addEventListener(n”, “ ‘mouseover’,n”, “ on_mouseover_closure(‘Stop Interaction’)n”, “ );n”, “ buttongrp.appendChild(button);n”, “ var titlebar = this.root.querySelector(‘.ui-dialog-titlebar’);n”, “ titlebar.insertBefore(buttongrp, titlebar.firstChild);n”, “};n”, “n”, “mpl.figure.prototype._remove_fig_handler = function (event) {n”, “ var fig = event.data.fig;n”, “ if (event.target !== this) {n”, “ // Ignore bubbled events from children.n”, “ return;n”, “ }n”, “ fig.close_ws(fig, {});n”, “};n”, “n”, “mpl.figure.prototype._root_extra_style = function (el) {n”, “ el.style.boxSizing = ‘content-box’; // override notebook setting of border-box.n”, “};n”, “n”, “mpl.figure.prototype._canvas_extra_style = function (el) {n”, “ // this is important to make the div ‘focusablen”, “ el.setAttribute(‘tabindex’, 0);n”, “ // reach out to IPython and tell the keyboard manager to turn it’s selfn”, “ // off when our div gets focusn”, “n”, “ // location in version 3n”, “ if (IPython.notebook.keyboard_manager) {n”, “ IPython.notebook.keyboard_manager.register_events(el);n”, “ } else {n”, “ // location in version 2n”, “ IPython.keyboard_manager.register_events(el);n”, “ }n”, “};n”, “n”, “mpl.figure.prototype._key_event_extra = function (event, _name) {n”, “ var manager = IPython.notebook.keyboard_manager;n”, “ if (!manager) {n”, “ manager = IPython.keyboard_manager;n”, “ }n”, “n”, “ // Check for shift+entern”, “ if (event.shiftKey && event.which === 13) {n”, “ this.canvas_div.blur();n”, “ // select the cell after this onen”, “ var index = IPython.notebook.find_cell_index(this.cell_info[0]);n”, “ IPython.notebook.select(index + 1);n”, “ }n”, “};n”, “n”, “mpl.figure.prototype.handle_save = function (fig, _msg) {n”, “ fig.ondownload(fig, null);n”, “};n”, “n”, “mpl.find_output_cell = function (html_output) {n”, “ // Return the cell and output element which can be found *uniquely in the notebook.n”, “ // Note - this is a bit hacky, but it is done because the "notebook_saving.Notebook"n”, “ // IPython event is triggered only after the cells have been serialised, which forn”, “ // our purposes (turning an active figure into a static one), is too late.n”, “ var cells = IPython.notebook.get_cells();n”, “ var ncells = cells.length;n”, “ for (var i = 0; i < ncells; i++) {n”, “ var cell = cells[i];n”, “ if (cell.cell_type === ‘code’) {n”, “ for (var j = 0; j < cell.output_area.outputs.length; j++) {n”, “ var data = cell.output_area.outputs[j];n”, “ if (data.data) {n”, “ // IPython >= 3 moved mimebundle to data attribute of outputn”, “ data = data.data;n”, “ }n”, “ if (data[‘text/html’] === html_output) {n”, “ return [cell, data, j];n”, “ }n”, “ }n”, “ }n”, “ }n”, “};n”, “n”, “// Register the function which deals with the matplotlib target/channel.n”, “// The kernel may be null if the page has been refreshed.n”, “if (IPython.notebook.kernel !== null) {n”, “ IPython.notebook.kernel.comm_manager.register_target(n”, “ ‘matplotlib’,n”, “ mpl.mpl_figure_commn”, “ );n”, “}n”

], “text/plain”: [

“<IPython.core.display.Javascript object>”

]

}, “metadata”: {}, “output_type”: “display_data”

}, {

“data”: {
“text/html”: [

“<img src="" width="640">”

], “text/plain”: [

“<IPython.core.display.HTML object>”

]

}, “metadata”: {}, “output_type”: “display_data”

}

], “source”: [

“# standard matplotlib stuffn”, “# create the different plotting axesn”, “fig, ax = plt.subplots(subplot_kw={"projection": "3d"})n”, “n”, “ax.set_xlabel("x")n”, “ax.set_ylabel("y")n”, “ax.set_zlabel("z")n”, “n”, “# animatplot stuffn”, “# now we make our blockn”, “n”, “block = amp.blocks.Surface(X[:, :, 0], Y[:, :, 0], data, t_axis=2)n”, “timeline = amp.Timeline(t, fps=10)n”, “n”, “# now to contruct the animationn”, “anim = amp.Animation([block], timeline)n”, “anim.controls()n”, “n”, “anim.save_gif("images/surface")n”, “plt.show()”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“There is a lot going on here so lets break it down.n”, “n”, “Firstly, the `standard matplotlib stuff` is creating, and labeling all of our axes for our subplot. This is exactly how one might do a static, non-animated plot.n”, “n”, “When we make the Surface block, we pass in the x, y data as 2D arrays (`X[:,:,0]` and `Y[:,:,0]`), and the z data as a 3D array. We also specifify that the time axis is the last axis of the data `t_axis=2`.n”, “n”, “To set the axis limits, you need to use ax.set_xlim(), ax.set_ylim() and ax.set_zlim(). The keywords `vmin`, and `vmax` control the color scale if you pass a cmap argument.n”, “n”, “The rest simply brings the block and the timeline together into an animation.”

]

}, {

“cell_type”: “raw”, “metadata”: {

“raw_mimetype”: “text/restructuredtext”

}, “source”: [

“.. image:: surface.gif”

]

}, {

“cell_type”: “code”, “execution_count”: null, “metadata”: {}, “outputs”: [], “source”: []

}

], “metadata”: {

“celltoolbar”: “Raw Cell Format”, “kernelspec”: {

“display_name”: “Python 3”, “language”: “python”, “name”: “python3”

}, “language_info”: {

“codemirror_mode”: {

“name”: “ipython”, “version”: 3

}, “file_extension”: “.py”, “mimetype”: “text/x-python”, “name”: “python”, “nbconvert_exporter”: “python”, “pygments_lexer”: “ipython3”, “version”: “3.8.6”

}

}, “nbformat”: 4, “nbformat_minor”: 2

}