next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000055709 seconds elapsed
 -- 0.000554725 seconds elapsed
 -- 0.000144589 seconds elapsed
 -- 0.000055326 seconds elapsed
 -- 0.000449182 seconds elapsed
 -- 0.000124197 seconds elapsed
 -- 0.000035897 seconds elapsed
 -- 0.000045962 seconds elapsed
 -- 0.000089329 seconds elapsed
 -- 0.00006424 seconds elapsed
 -- 0.000422126 seconds elapsed
 -- 0.000118969 seconds elapsed
 -- 0.000054542 seconds elapsed
 -- 0.000426176 seconds elapsed
 -- 0.00011757 seconds elapsed
 -- 0.000049895 seconds elapsed
 -- 0.000382162 seconds elapsed
 -- 0.000116587 seconds elapsed
 -- 0.000054375 seconds elapsed
 -- 0.00056967 seconds elapsed
 -- 0.000141277 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000049403 seconds elapsed
 -- 0.000475294 seconds elapsed
 -- 0.000111125 seconds elapsed
 -- 0.000048251 seconds elapsed
 -- 0.000426221 seconds elapsed
 -- 0.00010296 seconds elapsed
 -- 0.000084291 seconds elapsed
 -- 0.000431318 seconds elapsed
 -- 0.000115865 seconds elapsed
 -- 0.000061241 seconds elapsed
 -- 0.000396663 seconds elapsed
 -- 0.000107054 seconds elapsed
 -- 0.000054412 seconds elapsed
 -- 0.000382468 seconds elapsed
 -- 0.000119724 seconds elapsed
 -- 0.000052858 seconds elapsed
 -- 0.000461646 seconds elapsed
 -- 0.000122926 seconds elapsed
 -- 0.000049529 seconds elapsed
 -- 0.000470218 seconds elapsed
 -- 0.00012544 seconds elapsed
 -- 0.000051417 seconds elapsed
 -- 0.000462118 seconds elapsed
 -- 0.000113799 seconds elapsed
 -- 0.000054256 seconds elapsed
 -- 0.000398771 seconds elapsed
 -- 0.000111644 seconds elapsed
 -- 0.000050869 seconds elapsed
 -- 0.000394997 seconds elapsed
 -- 0.00012631 seconds elapsed
 -- 0.000050945 seconds elapsed
 -- 0.000390641 seconds elapsed
 -- 0.00011362 seconds elapsed
 -- 0.000055063 seconds elapsed
 -- 0.000445088 seconds elapsed
 -- 0.000126078 seconds elapsed
 -- 0.00005342 seconds elapsed
 -- 0.000602803 seconds elapsed
 -- 0.000201633 seconds elapsed
 -- 0.000049953 seconds elapsed
 -- 0.000602963 seconds elapsed
 -- 0.00019844 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.