next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000057287 seconds elapsed
 -- 0.000690709 seconds elapsed
 -- 0.000164829 seconds elapsed
 -- 0.00005345 seconds elapsed
 -- 0.000597984 seconds elapsed
 -- 0.000138239 seconds elapsed
 -- 0.000045115 seconds elapsed
 -- 0.000042269 seconds elapsed
 -- 0.000113323 seconds elapsed
 -- 0.000054061 seconds elapsed
 -- 0.000556065 seconds elapsed
 -- 0.000133883 seconds elapsed
 -- 0.000056045 seconds elapsed
 -- 0.000518014 seconds elapsed
 -- 0.000144402 seconds elapsed
 -- 0.000055794 seconds elapsed
 -- 0.000528834 seconds elapsed
 -- 0.000131777 seconds elapsed
 -- 0.00005338 seconds elapsed
 -- 0.000611058 seconds elapsed
 -- 0.000160582 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000061967 seconds elapsed
 -- 0.000619543 seconds elapsed
 -- 0.000135655 seconds elapsed
 -- 0.000052528 seconds elapsed
 -- 0.000551135 seconds elapsed
 -- 0.000141055 seconds elapsed
 -- 0.000072587 seconds elapsed
 -- 0.000571444 seconds elapsed
 -- 0.000155792 seconds elapsed
 -- 0.000053661 seconds elapsed
 -- 0.000592032 seconds elapsed
 -- 0.000129483 seconds elapsed
 -- 0.000052449 seconds elapsed
 -- 0.000511821 seconds elapsed
 -- 0.000129584 seconds elapsed
 -- 0.000053521 seconds elapsed
 -- 0.000557949 seconds elapsed
 -- 0.000152747 seconds elapsed
 -- 0.00005298 seconds elapsed
 -- 0.000634512 seconds elapsed
 -- 0.000134422 seconds elapsed
 -- 0.000067016 seconds elapsed
 -- 0.000561014 seconds elapsed
 -- 0.0001442 seconds elapsed
 -- 0.000057007 seconds elapsed
 -- 0.000563499 seconds elapsed
 -- 0.000140323 seconds elapsed
 -- 0.000055215 seconds elapsed
 -- 0.000522541 seconds elapsed
 -- 0.000147508 seconds elapsed
 -- 0.000056647 seconds elapsed
 -- 0.000533141 seconds elapsed
 -- 0.000135826 seconds elapsed
 -- 0.000066526 seconds elapsed
 -- 0.000555153 seconds elapsed
 -- 0.000147398 seconds elapsed
 -- 0.000053802 seconds elapsed
 -- 0.000808919 seconds elapsed
 -- 0.000232256 seconds elapsed
 -- 0.000055244 seconds elapsed
 -- 0.000820432 seconds elapsed
 -- 0.000246323 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.