User Documentation for CVODES v6.7.0
SUNDIALS v6.7.0

Alan C. Hindmarsh!, Radu Serban®, Cody J. Balos!,
David J. Gardner', Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

December 18, 2023

aials

<
S

(Vo)

UCRL-SM-208111

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan
Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M.
Yang.

Contents

1 Introduction

1.1 Historical Background
1.2 Changes from previous versions
1.3 Reading this User Guide
1.4 SUNDIALS License and Notices . . .
2 Mathematical Considerations
2.1 IVPsolution
2.2 IVPs with constraints
2.3 Preconditioning
2.4 BDF stability limit detection
2.5 Rootfinding
2.6 Pure Quadrature Integration
2.7 Forward Sensitivity Analysis
2.8 Adjoint Sensitivity Analysis
2.9 Checkpointing scheme
2.10 Second-order sensitivity analysis . . .

3 Code Organization

3.1

CVODES organization

4 Using SUNDIALS

4.1
4.2
4.3
4.4
4.5
4.6

The SUNContext Type
SUNDIALS Status Logging
Performance Profiling
SUNDIALS Version Information . . .
SUNDIALS Fortran Interface

Features for GPU Accelerated Computing

5 Using CVODES

5.1
52
53
5.4

Using CVODES for IVP Solution . . .
Integration of pure quadrature equations

Using CVODES for Forward Sensitivity Analysis
Using CVODES for Adjoint Sensitivity Analysis

6 Vector Data Structures

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Description of the NVECTOR Modules

Description of the NVECTOR operations i it ettt e

NVECTOR functions used by CVODES
The NVECTOR_SERIAL Module . . .
The NVECTOR_PARALLEL Module
The NVECTOR_OPENMP Module . .
The NVECTOR_PTHREADS Module

DN —

25
27

29
29
34
34
35
36
37
37
41
42
43

45
45

51
51
56
60
63
64
72

75
75
140
155
185

225
225
232
243
245
248
252
255

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

The NVECTOR_PARHYP Module e
The NVECTOR_PETSC Module et
The NVECTOR_CUDA Module e e e e e e e e
The NVECTOR_HIP Modulettt
The NVECTOR_SYCL Module e st
The NVECTOR_RAJAModule e
The NVECTOR_KOKKOS Module e s
The NVECTOR_OPENMPDEV Module i i
The NVECTOR_TRILINOS Modulettt e e e et
The NVECTOR_MANYVECTOR Module it
The NVECTOR_MPIMANYVECTOR Module,
The NVECTOR_MPIPLUSX Module o e
NVECTOR Examples o o e e e e e e e e e e e e e e e e e

Matrix Data Structures

7.1
7.2
7.3
7.4
1.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Description of the SUNMATRIX Modules i
Description of the SUNMATRIX operations
The SUNMATRIX_DENSE Module i
The SUNMATRIX_MAGMADENSE Module,
The SUNMATRIX_ONEMKLDENSE Module
The SUNMATRIX_BAND Module et
The SUNMATRIX_CUSPARSE Module
The SUNMATRIX_SPARSE Module i
The SUNMATRIX_SLUNRLOC Module it
The SUNMATRIX_GINKGO Module ittt
The SUNMATRIX_KOKKOSDENSE Module
SUNMATRIX Examples o o i e e e e e e e e e e e e e e e e e
SUNMatrix functions used by CVODES e

Linear Algebraic Solvers

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

The SUNLinearSolver APL e e e
CVODES SUNLinearSolverinterface it it it e e
The SUNLinSol_Band Module i
The SUNLinSol Dense Module e e e e e
The SUNLinSol_KLU Module e e e e e s e
The SUNLinSol_LapackBand Module it
The SUNLinSol_LapackDense Module ittt
The SUNLinSol_MagmaDense Module
The SUNLinSol_OneMklDense Module i ii .
The SUNLinSol PCG Module o e e e e e s
The SUNLinSol_SPBCGS Module e e e e s e e
The SUNLinSol_SPFGMR Module e e e
The SUNLinSol_SPGMR Module e e e e e e e e e
The SUNLinSol_SPTFQMR Module it i et e
The SUNLinSol_SuperLUDIST Module it
The SUNLinSol_SuperLUMT Module
The SUNLinSol_cuSolverSp_batchQR Module
The SUNLINEARSOLVER_GINKGO Module i e
The SUNLINEARSOLVER_KOKKOSDENSE Module
SUNLinearSolver Examples o e e

Nonlinear Algebraic Solvers

9.1
9.2

The SUNNonlinearSolver API e
CVODES SUNNonlinearSolver interface v i i it et i e

ii

9.3 The SUNNonlinSol_Newton implementation
9.4 The SUNNonlinSol_FixedPoint implementation
9.5 The SUNNonlinSol_PetscSNES implementation

10 Tools for Memory Management
10.1 The SUNMemoryHelper APL e e e
10.2 The SUNMemoryHelper_Cuda Implementation
10.3 The SUNMemoryHelper_Hip Implementation
10.4 The SUNMemoryHelper_Sycl Implementation

11 Installation Procedure
11.1 CMake-based installation L e e e
11.2 Installed libraries and exported header files

12 CVODES Constants
12.1 CVODES input CONStants v v vt v it e et e e e e e e e e e e e e e e e
12.2 CVODES output constants v v v v v it e it e e e e e e e e e e e e e e e

13 Release History
Bibliography

Index

431
431
436
438
440

443
444
466

471
471
472

475

477

481

iii

Chapter 1

Introduction

CVODES [55] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers [39]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities. CVODES is a solver for stiff and nonstiff initial value problems (IVPs) for systems of ordinary
differential equation (ODEs). In addition to solving stiff and nonstiff ODE systems, CVODES has sensitivity analysis
capabilities, using either the forward or the adjoint methods.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that have been written at
LLNL in the past are VODE [14] and VODPK [17]. VODE is a general purpose solver that includes methods for both
stiff and nonstiff systems, and in the stiff case uses direct methods (full or banded) for the solution of the linear systems
that arise at each implicit step. Externally, VODE is very similar to the well known solver LSODE [52]. VODPK is a
variant of VODE that uses a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear
systems. VODPK is a powerful tool for large stiff systems because it combines established methods for stiff integration,
nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness,
in the form of the user-supplied preconditioner matrix [15]. The capabilities of both VODE and VODPK have been
combined in the C-language package CVODE [22].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjuc-
tion with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [54], FGMRES (Flexible
Generalized Minimum RESidual) [53], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [61], TFQMR (Transpose-Free
Quasi-Minimal Residual) [32], and PCG (Preconditioned Conjugate Gradient) [34] linear iterative methods. As Krylov
methods, these require almost no matrix storage for solving the Newton equations as compared to direct methods. How-
ever, the algorithms allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential
for an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct linear solver
methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES
as the best overall choice. However, users are encouraged to compare all options, especially if encountering conver-
gence failures with GMRES. Bi-CGStab and TFQMR have an advantage in storage requirements, in that the number of
workspace vectors they require is fixed, while that number for GMRES depends on the desired Krylov subspace size.
FGMRES has an advantage in that it is designed to support preconditioners that vary between iterations (e.g. itera-
tive methods). PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organization has been
changed considerably. One key feature of the CVODE organization is that the linear system solvers comprise a layer
of code modules that is separated from the integration algorithm, allowing for easy modification and expansion of the
linear solver array. A second key feature is a separate module devoted to vector operations; this facilitated the extension

User Documentation for CVODES, v6.7.0

to multiprosessor environments with minimal impacts on the rest of the solver, resulting in PVODE [19], the parallel
variant of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE. Sensitivity analysis
capabilities, both forward and adjoint, have been added to the main integrator. Enabling forward sensititivity computa-
tions in CVODES will result in the code integrating the so-called sensitivity equations simultaneously with the original
IVP, yielding both the solution and its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis,
most useful when the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called adjoint equations
backward in time. CVODES provides the infrastructure needed to integrate any final-condition ODE dependent on the
solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across the SUNDIALS
suite. The key feature of the N_Vector module is that it is written in terms of abstract vector operations with the
actual vector functions attached by a particular implementation (such as serial or parallel) of N_Vector. This allows
writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which can be user-
supplied), as well as allowing more than one N_Vector module to be linked into an executable file. SUNDIALS
(and thus CVODES) is supplied with serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel N_Vector
implementations.

There were several motivations for choosing the C language for CVODE, and later for CVODES. First, a general
movement away from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure, and
dynamic memory allocation features in C are extremely useful in software of this complexity. Finally, we prefer C
over C++ for CVODES because of the wider availability of C compilers, the potentially greater efficiency of C, and the
greater ease of interfacing the solver to applications written in extended Fortran.

1.2 Changes from previous versions

1.2.1 Changes in v6.7.0

Improved computational complexity of SUNMatScaleAddI_Sparse from O(M*N) to O(NNZ).
Added Fortran support for the LAPACK dense SUNLinearSolver implementation.

Fixed a regression introduced by the stop time bug fix in v6.6.1 where CVODE would return at the stop time rather
than the requested output time if the stop time was reached in the same step in which the output time was passed.

Fixed scaling bug in SUNMatScaleAddI_Sparse for non-square matrices.
Changed the SUNProfiler so that it does not rely on MPI_WTime in any case. This fixes GitHub Issue #312.
Fixed missing soversions in some SUNLinearSolver and SUNNonlinearSolver CMake targets.

Renamed some internal types in CVODES and IDAS to allow both packages to be built together in the same binary.

1.2.2 Changes in v6.6.2

Fixed the build system support for MAGMA when using a NVIDIA HPC SDK installation of CUDA and fixed the
targets used for rocBLAS and rocSPARSE.

2 Chapter 1. Introduction

https://github.com/LLNL/sundials/issues/312

User Documentation for CVODES, v6.7.0

1.2.3 Changes in v6.6.1

Updated the Tpetra N'Vector interface to support Trilinos 14.
Fixed a memory leak when destroying a CUDA, HIP, SYCL, or system SUNMemoryHelper object.

Fixed a bug where the stop time may not be cleared when using normal mode if the requested output time is the same
as the stop time. Additionally, this fix removes an unnecessary interpolation of the solution at the stop time that could
occur in this case.

1.2.4 Changes in v6.6.0

Updated the default CVODES behavior when returning the solution when the internal time has reached a user-specified
stop time. Previously, the output solution was interpolated to the value of tstop; the default is now to copy the internal
solution vector. Users who wish to revert to interpolation may call the routine CVodeSetInterpolateStopTime().

Updated the F2003 utility routines SUNDIALSFileOpen() and SUNDIALSFileClose () to support user specification
of stdout and stderr strings for the output file names.

1.2.5 Changes in v6.5.1

Added the function CVodeClearStopTime () to disable a previously set stop time.
Fixed build errors when using SuperLU_DIST with ROCM enabled to target AMD GPUs.

Fixed compilation errors in some SYCL examples when using the icx compiler.

1.2.6 Changes in v6.5.0

Added the functions CVodeGetJac (), CVodeGetJacTime (), CVodeGetJacNumSteps () to assist in debugging sim-
ulations utilizing a matrix-based linear solver.

Added support for the SYCL backend with RAJA 2022.x.y.
Fixed an underflow bug during root finding.

A new capability to keep track of memory allocations made through the SUNMemoryHelper classes has been added.
Memory allocation stats can be accessed through the SUNMemoryHelper_GetAllocStats() function. See the doc-
umentation for the SUNMemoryHelper classes for more details.

Added support for CUDA v12.

Fixed an issue with finding oneMKL when using the icpx compiler with the -fsyc1 flag as the C++ compiler instead
of dpcpp.

Fixed the shape of the arrays returned by FN_VGetArrayPointer functions as well as the FSUNDenseMatrix_-
Data, FSUNBandMatrix_Data, FSUNSparseMatrix_Data, FSUNSparseMatrix_IndexValues, and FSUNSparse-
Matrix_IndexPointers functions. Compiling and running code that uses the SUNDIALS Fortran interfaces with
bounds checking will now work.

1.2. Changes from previous versions 3

User Documentation for CVODES, v6.7.0

1.2.7 Changes in v6.4.1

Fixed a bug with the Kokkos interfaces that would arise when using clang.

Fixed a compilation error with the Intel one API 2022.2 Fortran compiler in the Fortran 2003 interface test for the serial
N_Vector.

Fixed a bug in the SUNLINSOL_LAPACKBAND and SUNLINSOL_LAPACKDENSE modules which would cause
the tests to fail on some platforms.

1.2.8 Changes in v6.4.0

CMake 3.18.0 or newer is now required for CUDA support.

A C++14 compliant compiler is now required for C++ based features and examples e.g., CUDA, HIP, RAJA, Trilinos,
SuperLU_DIST, MAGMA, GINKGO, and KOKKOS.

Added support for GPU enabled SuperLU_DIST and SuperLU_DIST v8.x.x. Removed support for SuperLU_DIST
v6.x.x or older. Fix mismatched definition and declaration bug in SuperLU_DIST matrix constructor.

Added support for the Ginkgo linear algebra library. This support includes new SUNMatrix and SUNLinearSolver
implementations, see the sections §7.10 and §8.18.

Added new NVector, dense SUNMatrix, and dense SUNLinearSolver implementations utilizing the Kokkos Ecosys-
tem for performance portability, see sections §6.14, §7.11, and §8.19 for more information.

Fixed a bug in the CUDA and HIP vectors where N_VMaxNorm() would return the minimum positive floating-point
value for the zero vector.

Fixed a memory leak where the projection memory would not be deallocated when calling CVodeFree ().

1.2.9 Changes in v6.3.0

Added the function CVodeGetUserData() to retrieve the user data pointer provided to CVodeSetUserData().

Fixed the unituitive behavior of the USE_GENERIC_MATH CMake option which caused the double precision math func-
tions to be used regardless of the value of SUNDIALS_PRECISION. Now, SUNDIALS will use precision appropriate
math functions when they are available and the user may provide the math library to link to via the advanced CMake
option SUNDIALS_MATH_LIBRARY.

Changed SUNDIALS_LOGGING_ENABLE_MPI CMake option default to be ‘OFF’.

1.2.10 Changes in v6.2.0

Added the SUNLogger API which provides a SUNDIALS-wide mechanism for logging of errors, warnings, informa-
tional output, and debugging output.

Deprecated SUNNonlinSolSetPrintLevel_Newton(), SUNNonlinSolSetInfoFile_Newton(), SUNNon-
linSolSetPrintLevel_FixedPoint(), SUNNonlinSolSetInfoFile_FixedPoint(), SUNLinSolSet-
InfoFile_PCG(), SUNLinSolSetPrintLevel_PCG(), SUNLinSolSetInfoFile_SPGMR(), SUNLinSolSet-
PrintLevel_SPGMR(), SUNLinSolSetInfoFile_SPFGMR(), SUNLinSolSetPrintLevel_SPFGMR(), SUNLin-
SolSetInfoFile_SPTFQM(), SUNLinSolSetPrintLevel_ SPTFQMR(), SUNLinSolSetInfoFile_SPBCGS(),
SUNLinSolSetPrintLevel _SPBCGS() it is recommended to use the SUNLogger API instead. The SUNLinSolSet-
InfoFile_** and SUNNonlinSolSetInfoFile_* family of functions are now enabled by setting the CMake option
SUNDIALS_LOGGING_LEVEL to a value >= 3.

Added the function SUNProfiler_Reset () to reset the region timings and counters to zero.

4 Chapter 1. Introduction

https://ginkgo-project.github.io/
https://kokkos.org/
https://kokkos.org/

User Documentation for CVODES, v6.7.0

Added the function CVodePrintAlIlStats() to output all of the integrator, nonlinear solver, linear solver, and other
statistics in one call. The file scripts/sundials_csv.py contains functions for parsing the comma-separated value
output files.

Added support for integrating IVPs with constraints using BDF methods and projecting the solution onto the con-
straint manifold with a user defined projection function. This implementation is accompanied by additions to user
documentation and CVODES examples. See CVodeSetProjFn() for more information.

Added the functions CVodeSetEtaFixedStepBounds(), CVodeSetEtaMaxFirstStep(), CVodeSetEtaMax-
EarlyStep(), CVodeSetNumStepsEtaMaxEarlyStep (), CVodeSetEtaMax (), CVodeSetEtaMin(), CVodeSetE-
taMinErrFail (), CVodeSetEtaMaxErrFail (), CVodeSetNumFailsEtaMaxErrFail (), and CVodeSetEtaCon-
vFail () to adjust various parameters controlling changes in step size.

Added the functions CVodeSetDeltaGammaMaxLSetup () and CVodeSetDeltaGammaMaxBadJac () to adjust the ~y
change thresholds to require a linear solver setup or Jacobian/precondition update, respectively.

The behavior of N_VSetKernelExecPolicy_Sycl() has been updated to be consistent with the CUDA and HIP
vectors. The input execution policies are now cloned and may be freed after calling N_VSetKernelExecPolicy_-
Sycl(). Additionally, NULL inputs are now allowed and, if provided, will reset the vector execution policies to the
defaults.

Fixed the SUNContext convenience class for C++ users to disallow copy construction and allow move construction.
A memory leak in the SYCL vector was fixed where the execution policies were not freed when the vector was destroyed.

The include guard in nvector_mpimanyvector.h has been corrected to enable using both the Many Vector and MPI-
Many Vector NVector implementations in the same simulation.

Changed exported SUNDIALS PETSc CMake targets to be INTERFACE IMPORTED instead of UNKNOWN IM-
PORTED.

A bug was fixed in the functions CVodeGetNumNonlinSolvConvFails(), CVodeGetNonlinSolvStats(),
CVodeGetSensNumNonlinSolvConvFails(), CVodeGetSensNonlinSolvStats(), CVodeGetStgrSensNum-
NonlinSolvConvFails(),and CVodeGetStgrSensNonlinSolvStats () where the number of nonlinear solver fail-
ures returned was the number of failed steps due to a nonlinear solver failure i.e., if a nonlinear solve failed with a stale
Jacobian or preconditioner but succeeded after updating the Jacobian or preconditioner, the initial failure was not in-
cluded in the nonlinear solver failure count. These functions have been updated to return the total number of nonlinear
solver failures. As such users may see an increase in the number of failures reported.

The functions CVodeGetNumStepSolveFails (), CVodeGetNumStepSensSolveFails (), and CVodeGetNumStep-
StgrSensSolveFails() have been added to retrieve the number of failed steps due to a nonlinear solver fail-
ure. The counts returned from these functions will match those previously returned by CVodeGetNumNonlin-
SolvConvFails(), CVodeGetNonlinSolvStats(), CVodeGetSensNumNonlinSolvConvFails(), CVodeGet-
SensNonlinSolvStats(), CVodeGetStgrSensNumNonlinSolvConvFails(), and CVodeGetStgrSensNonlin-
SolvStats().

1.2.11 Changes in v6.1.1

Fixed exported SUNDIALSConfig.cmake.

1.2. Changes from previous versions 5

User Documentation for CVODES, v6.7.0

1.2.12 Changes in v6.1.0

Added new reduction implementations for the CUDA and HIP NVECTORs that use shared memory (local data storage)
instead of atomics. These new implementations are recommended when the target hardware does not provide atomic
support for the floating point precision that SUNDIALS is being built with. The HIP vector uses these by default, but
the N_VSetKernelExecPolicy_Cuda() and N_VSetKernelExecPolicy_Hip() functions can be used to choose
between different reduction implementations.

SUNDIALS: : <1ib> targets with no static/shared suffix have been added for use within the build directory (this mirrors
the targets exported on installation).

CMAKE_C_STANDARD is now set to 99 by default.
Fixed exported SUNDIALSConfig.cmake when profiling is enabled without Caliper.
Fixed sundials_export.h include in sundials_config.h.

Fixed memory leaks in the SUNLINSOL_SUPERLUMT linear solver.

1.2.13 Changes in v6.0.0

SUNContext

SUNDIALS v6.0.0 introduces a new SUNContext object on which all other SUNDIALS objects depend. As such, the
constructors for all SUNDIALS packages, vectors, matrices, linear solvers, nonlinear solvers, and memory helpers
have been updated to accept a context as the last input. Users upgrading to SUNDIALS v6.0.0 will need to call
SUNContext_Create () to create a context object with before calling any other SUNDIALS library function, and then
provide this object to other SUNDIALS constructors. The context object has been introduced to allow SUNDIALS to
provide new features, such as the profiling/instrumentation also introduced in this release, while maintaining thread-
safety. See the documentation section on the SUNContext for more details.

A script upgrade-to-sundials-6-from-5.sh has been provided with the release (obtainable from the GitHub re-
lease page) to help ease the transition to SUNDIALS v6.0.0. The script will add a SUNCTX_PLACEHOLDER argument
to all of the calls to SUNDIALS constructors that now require a SUNContext object. It can also update deprecated
SUNDIALS constants/types to the new names. It can be run like this:

> ./upgrade-to-sundials-6-from-5.sh <files to update>

SUNProfiler

A capability to profile/instrument SUNDIALS library code has been added. This can be enabled with the CMake option
SUNDIALS_BUILD_WITH_PROFILING. A built-in profiler will be used by default, but the Caliper library can also be
used instead with the CMake option ENABLE_CALIPER. See the documentation section on profiling for more details.
WARNING: Profiling will impact performance, and should be enabled judiciously.

SUNMemoryHelper

The SUNMemoryHelper functions SUNMemoryHelper_Alloc(), SUNMemoryHelper_Dealloc(), and SUNMemory-
Helper_Copy () have been updated to accept an opaque handle as the last input. At a minimum, user-defined SUN-
MemoryHelper implementations will need to update these functions to accept the additional argument. Typically, this
handle is the execution stream (e.g., a CUDA/HIP stream or SYCL queue) for the operation. The CUDA, HIP, and
SYCL implementations have been updated accordingly. Additionally, the constructor SUNMemoryHelper_Sycl() has
been updated to remove the SYCL queue as an input.

NVector

Two new optional vector operations, N_VDotProdMultiLocal () and N_VDotProdMultiAlIReduce (), have been
added to support low-synchronization methods for Anderson acceleration.

6 Chapter 1. Introduction

https://github.com/LLNL/Caliper

User Documentation for CVODES, v6.7.0

The CUDA, HIP, and SYCL execution policies have been moved from the sundials namespace to the sundi-
als::cuda, sundials::hip, and sundials: :sycl namespaces respectively. Accordingly, the prefixes “Cuda”,
“Hip”, and “Sycl” have been removed from the execution policy classes and methods.

The Sundials namespace used by the Trilinos Tpetra NVector has been replaced with the sundi-
als::trilinos: :nvector_tpetra namespace.

The serial, PThreads, PETSc, hypre, Parallel, OpenMP_DEYV, and OpenMP vector functions N_VCloneVectorAr-
ray_* and N_VDestroyVectorArray_%* have been deprecated. The generic N_VCloneVectorArray () and N_VDe-
stroyVectorArray () functions should be used instead.

The previously deprecated constructor N_VMakeWithManagedAllocator_Cuda and the function N_VSetCudaS-
tream_Cuda have been removed and replaced with N_VNewlVithMemHelp_Cuda() and N_VSetKerrnelExecPol-
icy_Cuda() respectively.

The previously deprecated macros PVEC_REAL_MPI_TYPE and PVEC_INTEGER_MPI_TYPE have been removed and

replaced with MPI_SUNREALTYPE and MPI_SUNINDEXTYPE respectively.

SUNLinearSolver

The following previously deprecated functions have been removed:

Removed Replacement

SUNBandLinearSolver SUNLinSol_Band()
SUNDenseLinearSolver SUNLinSol_Dense()

SUNKLU SUNLinSol_KLU()

SUNKLUReInit SUNLinSol_KLUReInit()
SUNKLUSetOrdering SUNLinSol_KLUSetOrdering()
SUNLapackBand SUNLinSol_LapackBand()
SUNLapackDense SUNLinSol_LapackDense ()

SUNPCG SUNLinSol_PCG()
SUNPCGSetPrecType SUNLinSol_PCGSetPrecType()
SUNPCGSetMax1l SUNLinSol_PCGSetMax1 ()
SUNSPBCGS SUNLinSol_SPBCGS()
SUNSPBCGSSetPrecType SUNLinSol_SPBCGSSetPrecType()
SUNSPBCGSSetMax1l SUNLinSol_SPBCGSSetMaxl()
SUNSPFGMR SUNLinSol_SPFGMR()
SUNSPFGMRSetPrecType SUNLinSol_SPFGMRSetPrecType ()
SUNSPFGMRSetGSType SUNLinSol_SPFGMRSetGSType ()
SUNSPFGMRSetMaxRestarts SUNLinSol_SPFGMRSetMaxRestarts()
SUNSPGMR SUNLinSol_SPGMR()
SUNSPGMRSetPrecType SUNLinSol_SPGMRSetPrecType()
SUNSPGMRSetGSType SUNLinSol_SPGMRSetGSType ()
SUNSPGMRSetMaxRestarts SUNLinSol_SPGMRSetMaxRestarts()
SUNSPTFQMR SUNLinSol_SPTFQMR()
SUNSPTFQMRSetPrecType SUNLinSol_SPTFQMRSetPrecType()
SUNSPTFQMRSetMax1 SUNLinSol_SPTFQMRSetMax1 ()
SUNSuperLUMT SUNLinSol_SuperLUMT ()

SUNSuperLUMTSetOrdering

SUNLinSol_SuperLUMTSetOrdering ()

CVODES

Added a new function CVodeGetLinSolveStats() to get the CVODES linear solver statistics as a group.

Added a new function, CVodeSetMonitorFn(), that takes a user-function to be called by CVODES after every nst
successfully completed time-steps. This is intended to provide a way of monitoring the CVODES statistics throughout

1.2. Changes from previous versions 7

User Documentation for CVODES, v6.7.0

the simulation.

The previously deprecated function CVodeSetMaxStepsBetweenJac has been removed and replaced with CVode-

SetJacEvalFrequency ()

Deprecations

In addition to the deprecations noted elsewhere, many constants, types, and functions have been renamed so that they
are properly namespaced. The old names have been deprecated and will be removed in SUNDIALS v7.0.0.

The following constants, macros, and typedefs are now deprecated:

Deprecated Name New Name
realtype sunrealtype
booleantype sunbooleantype
RCONST SUN_RCONST
BIG_REAL SUN_BIG_REAL
SMALL_REAL SUN_SMALL_REAL
UNIT_ROUNDOFF SUN_UNIT_ROUNDOFF
PREC_NONE SUN_PREC_NONE
PREC_LEFT SUN_PREC_LEFT
PREC_RIGHT SUN_PREC_RIGHT
PREC_BOTH SUN_PREC_BOTH

MODIFIED_GS
CLASSICAL_GS
ATimesFn
PSetupFn
PSolveFn
DlsMat
DENSE_COL
DENSE_ELEM
BAND_COL
BAND_COL_ELEM
BAND_ELEM

SUN_MODIFIED_GS
SUN_CLASSICAL_GS
SUNATimesFn
SUNPSetupFn
SUNPSolveFn
SUND1sMat
SUNDLS_DENSE_COL
SUNDLS_DENSE_ELEM
SUNDLS_BAND_COL
SUNDLS_BAND_COL_ELEM
SUNDLS_BAND_ELEM

In addition, the following functions are now deprecated (compile-time warnings will be thrown if supported by the

compiler):
Deprecated Name New Name
CVSpilsSetLinearSolver CVodeSetLinearSolver
CVSpilsSetEpsLin CVodeSetEpsLin
CVSpilsSetPreconditioner CVodeSetPreconditioner
CVSpilsSetJacTimes CVodeSetJacTimes
CVSpilsGetWorkSpace CVodeGetLinWorkSpace
CVSpilsGetNumPrecEvals CVodeGetNumPrecEvals
CVSpilsGetNumPrecSolves CVodeGetNumPrecSolves
CVSpilsGetNumLinIters CVodeGetNumLinIters
CVSpilsGetNumConvFails CVodeGetNumConvFails
CVSpilsGetNum]TSetupEvals CVodeGetNum]JTSetupEvals
CVSpilsGetNum]JtimesEvals CVodeGetNumJtimesEvals
CVSpilsGetNumRhsEvals CVodeGetNumLinRhsEvals
CVSpilsGetLastFlag CVodeGetLastLinFlag

continues on next page
8 Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

Table 1.1 — continued from previous page

Deprecated Name

New Name

CVSpilsGetReturnFlagName
CVSpilsSetLinearSolverB
CVSpilsSetEpsLinB
CVSpilsSetPreconditionerB
CVSpilsSetPreconditionerBS
CVSpilsSetJacTimesB
CVSpilsSetJacTimesBS
CVDlsSetLinearSolver
CVDlsSetJacFn
CVD1sGetWorkSpace
CVD1sGetNumJacEvals
CVD1sGetNumRhsEvals
CVDlsGetLastFlag
CVD1lsGetReturnFlagName
CVDlsSetLinearSolverB
CVDlsSetJacFnB
CVD1sSetJacFnBS
DenseGETRF

DenseGETRS

denseGETRF

denseGETRS

DensePOTRF

DensePOTRS

densePOTRF

densePOTRS

DenseGEQRF

DenseORMQR

denseGEQRF

denseORMQR

DenseCopy

denseCopy

DenseScale

denseScale
denseAddIdentity
DenseMatvec
denseMatvec

BandGBTRF

bandGBTRF

BandGBTRS

bandGBTRS

BandCopy

bandCopy

BandScale

bandScale
bandAddIdentity
BandMatvec

bandMatvec

ModifiedGS

ClassicalGS

QRfact

CVodeGetLinReturnFlagName
CVodeSetLinearSolverB
CVodeSetEpsLinB
CVodeSetPreconditionerB
CVodeSetPreconditionerBS
CVodeSetJacTimesB
CVodeSetJacTimesBS
CVodeSetLinearSolver
CVodeSetJacFn
CVodeGetLinWorkSpace
CVodeGetNumJlacEvals
CVodeGetNumLinRhsEvals
CVodeGetLastLinFlag
CVodeGetLinReturnFlagName
CVodeSetLinearSolverB
CVodeSetJacFnB
CVodeSetJacFnBS
SUND1sMat_DenseGETRF
SUND1sMat_DenseGETRS
SUND1sMat_denseGETRF
SUND1sMat_denseGETRS
SUND1sMat_DensePOTRF
SUND1sMat_DensePOTRS
SUND1sMat_densePOTRF
SUND1sMat_densePOTRS
SUND1sMat_DenseGEQRF
SUND1sMat_DenseORMQR
SUND1sMat_denseGEQRF
SUND1lsMat_denseORMQR
SUND1sMat_DenseCopy
SUND1sMat_denseCopy
SUND1sMat_DenseScale
SUNDlsMat_denseScale
SUND1sMat_denseAddIdentity
SUND1sMat_DenseMatvec
SUND1sMat_denseMatvec
SUND1sMat_BandGBTRF
SUND1sMat_bandGBTRF
SUND1sMat_BandGBTRS
SUND1sMat_bandGBTRS
SUND1sMat_BandCopy
SUND1sMat_bandCopy
SUND1sMat_BandScale
SUND1sMat_bandScale
SUND1sMat_bandAddIdentity
SUND1sMat_BandMatvec
SUND1sMat_bandMatvec
SUNModifiedGS
SUNClassicalGS

SUNQRFact

continues on next page

1.2. Changes from previous versions

User Documentation for CVODES, v6.7.0

Table 1.1 — continued from previous page

Deprecated Name New Name

QRsol SUNQRsol
DlsMat_NewDenseMat SUND1sMat_NewDenseMat
DlsMat_NewBandMat SUND1sMat_NewBandMat
DestroyMat SUND1sMat_DestroyMat
NewIntArray SUNDlsMat_NewIntArray
NewIndexArray SUND1sMat_NewIndexArray
NewRealArray SUND1lsMat_NewRealArray
DestroyArray SUND1sMat_DestroyArray
AddIdentity SUND1sMat_AddIdentity
SetToZero SUND1sMat_SetToZero
PrintMat SUND1lsMat_PrintMat
newDenselMat SUND1sMat_newDenseMat
newBandMat SUND1sMat_newBandMat
destroyMat SUND1sMat_destroyMat
newIntArray SUND1sMat_newIntArray
newIndexArray SUNDlsMat_newIndexArray
newRealArray SUNDlsMat_newRealArray
destroyArray SUND1sMat_destroyArray

In addition, the entire sundials_lapack.h header file is now deprecated for removal in SUNDIALS v7.0.0. Note,
this header file is not needed to use the SUNDIALS LAPACK linear solvers.

1.2.14 Changes in v5.8.0

The RAJA N_Vector implementation has been updated to support the SYCL backend in addition to the CUDA and
HIP backend. Users can choose the backend when configuring SUNDIALS by using the SUNDTALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the Intel oneAPI Math Kernel
Library (oneMKL). Both the matrix and the linear solver support general dense linear systems as well as block diagonal
linear systems. See Chapter §8.9 for more details. This module is experimental and is subject to change from version
to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate that the next
call to SUN1inSolSolve will be made with a zero initial guess. SUNLinearSolver implementations that do not use
the SUNLinSolNewEmpty constructor will, at a minimum, need set the setzeroguess function pointer in the linear
solver ops structure to NULL. The SUNDIALS iterative linear solver implementations have been updated to leverage
this new set function to remove one dot product per solve.

CVODES now supports a new “matrix-embedded” SUNLinearSolver type. This type supports user-supplied SUN-
LinearSolver implementations that set up and solve the specified linear system at each linear solve call. Any matrix-
related data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

Added the function CVodeSetN1sRhsFn to supply an alternative right-hand side function for use within nonlinear
system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package. The exported
targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess and a solution
scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR as standalone solvers as all
SUNDIALS packages utilize a zero initial guess.

10 Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

1.2.15 Changes in v5.7.0

A new N_Vector implementation based on the SYCL abstraction layer has been added targeting Intel GPUs. At present
the only SYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See Section §6.12 for more details. This
module is considered experimental and is subject to major changes even in minor releases.

A new SUNMatrix and SUNLinearSolver implementation were added to interface with the MAGMA linear algebra
library. Both the matrix and the linear solver support general dense linear systems as well as block diagonal linear
systems, and both are targeted at GPUs (AMD or NVIDIA). See Section §8.8 for more details.

1.2.16 Changes in v5.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDIALS_-
RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.2.17 Changes in v5.6.0

A new N_Vector implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See §6.11 for more details. This module is considered experimental and is subject to change
from version to version.

The RAJA N_Vector implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS CMake
variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This operation is useful
for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implementations no longer
require the SUNDIALS CUDA N_Vector. Instead, they require that the vector utilized provides the N_VGetDeviceAr-
rayPointer operation, and that the pointer returned by N_VGetDeviceArrayPointer is a valid CUDA device
pointer.

1.2.18 Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.2.19 Changes in v5.4.0
Added the function CVodeSetLSNormFactor to specify the factor for converting between integrator tolerances
(WRMS norm) and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new functions CVodeComputeState, and CVodeGetNonlinearSystemData which advanced users might find
useful if providing a custom SUNNonlinSolSysFn.

This change may cause an error in existing user code. The CVodeF function for forward integration with check-
pointing is now subject to a restriction on the number of time steps allowed to reach the output time. This is the same

1.2. Changes from previous versions 11

User Documentation for CVODES, v6.7.0

restriction applied to the CVode function. The default maximum number of steps is 500, but this may be changed using
the CVodeSetMaxNumSteps function. This change fixes a bug that could cause an infinite loop in the CVodeF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the SUNNonlin-
earSolver API have been updated to specify that they should return the number of nonlinear solver iterations and
convergence failures in the most recent solve respectively rather than the cumulative number of iterations and failures
across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinearSolver implemen-
tations have been updated accordingly. As before, the cumulative number of nonlinear iterations may be retreived by
calling CVodeGetNumNonlinSolvIters, CVodeGetSensNumNonlinSolvIters, CVodeGetStgrSensNumNonlin-
SolvIters, the cumulative number of failures with CVodeGetNumNonlinSolvConvFails, CVodeGetSensNumNon-
linSolvConvFails, CVodeGetStgrSensNumNonlinSolvConvFails, or both with CVodeGetNonlinSolvStats,
CVodeGetSensNonlinSolvStats, CVodeGetStgrSensNonlinSolvStats.

A minor inconsistency in checking the Jacobian evaluation frequency has been fixed. As a result codes using using
a non-default Jacobian update frequency through a call to CVodeSetMaxStepsBetweenJac will need to increase the
provided value by 1 to achieve the same behavior as before. For greater clarity the function CVodeSetMaxStepsBe-
tweenJac has been deprecated and replaced with CVodeSetJacEvalFrequency. Additionally, the function CVode-
SetLSetupFrequency has been added to set the frequency of calls to the linear solver setup function.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory management needs such
as using memory pools. This is paired with new constructors for the NVECTOR_CUDA and NVECTOR_RAJA modules that
accept a SUNMemoryHelper object. Refer to §4.6.1, §10, §6.10 and §6.13 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds managed
memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the N_VMake_-
Raja function because that signature was changed. This module remains experimental and is subject to change from
version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local ordinal
type to always be an int.

Added support for CUDA v11.

1.2.20 Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In addition, the
NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equivalent performance or some im-
provement, but a select few may observe minor performance degradation with the default settings. Users are encouraged
to contact the SUNDIALS team about any perfomance changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXED-
POINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must be built with the CMake option
SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

Added the optional functions CVodeSetJacTimesRhsFn and CVodeSetJacTimesRhsFnB to specify an alternative
right-hand side function for computing Jacobian-vector products with the internal difference quotient approximation.

12 Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

1.2.21 Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building
the Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes missing on some SUN-
DIALS API functions.

Fixed a memory leak from not deallocating the atol1Smin® and ato1QSmin® arrays.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse matrix implementation
from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR linear solver has been updated
to use this matrix, therefore, users of this module will need to update their code. These modules are still considered to
be experimental, thus they are subject to breaking changes even in minor releases.

The functions CVodeSetLinearSolutionScaling and CVodeSetLinearSolutionScalingB were added to enable
or disable the scaling applied to linear system solutions with matrix-based linear solvers to account for a lagged value
of v in the linear system matrix I — ~J. Scaling is enabled by default when using a matrix-based linear solver with
BDF methods.

1.2.22 Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and PETSC_-
LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Added two utility functions, SUNDIALSFileOpen() and SUNDIALSFileClose () for creating/destroying file pointers
that are useful when using the Fortran 2003 interfaces.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint module when using Anderson accelera-
tion.

1.2.23 Changes in v5.0.0

Build system changes

* Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when
CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds as
SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS, the path
to the BLAS library should be included in the variable for the third party library e.g., SUPERLUDIST_LIBRARIES
when enabling SuperLU_DIST.

* Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being built.
NVECTOR module changes

» Two new functions were added to aid in creating custom N_Vector objects. The constructor N_VNewEmpty ()
allocates an “empty” generic N_Vector with the object’s content pointer and the function pointers in the oper-
ations structure initialized to NULL. When used in the constructor for custom objects this function will ease the
introduction of any new optional operations to the N_Vector API by ensuring only required operations need to

1.2. Changes from previous versions 13

User Documentation for CVODES, v6.7.0

be set. Additionally, the function N_VCopyOps () has been added to copy the operation function pointers be-
tween vector objects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the N_Vector API by ensuring all operations are copied when
cloning objects. See §6.1.2 for more details.

Two new N_Vector implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR, have been cre-
ated to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU) or
for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accom-
panied by additions to user documentation and SUNDIALS examples. See §6.17 and §6.18 for more details.

One new required vector operation and ten new optional vector operations have been added to the N_Vector APL.
The new required operation, , returns the global length of an . The optional operations have been added to support
the new NVECTOR_MPIMANYVECTOR implementation. The operation must be implemented by subvectors that are
combined to create an NVECTOR_MPIMANYVECTOR, but is not used outside of this context. The remaining nine
operations are optional local reduction operations intended to eliminate unnecessary latency when performing
vector reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vec-
tor operations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VLINormLocal (), N_VWSqrSumLocal (),
N_VWSgrSumMaskLocal (), N_VInvTestLocal (), N_VConstrMaskLocal (), N_VMinLocal(),and N_VMin-
QuotientLocal (). If an N_Vector implementation defines any of the local operations as , then the NVEC-
TOR_MPIMANYVECTOR will call standard N_Vector operations to complete the computation.

An additional N_Vector implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied
by additions to user documentation and SUNDIALS examples. See §6.19 for more details.

The and functions have been removed from the NVECTOR_CUDA and NVECTOR_RAJA implementations re-
spectively. Accordingly, the nvector_mpicuda.h, libsundials_nvecmpicuda.lib, libsundials_-
nvecmpicudaraja.lib, and files have been removed. Users should use the NVECTOR_MPIPLUSX module cou-
pled in conjunction with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The nec-
essary changes are minimal and should require few code modifications. See the programs in and for examples of
how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer. See §6.10 for more details.

Added new Fortran 2003 interfaces for most N_Vector modules. See §6 for more details on how to use the
interfaces.

Added three new N_Vector utility functions N_VGetVecAtIndexVectorArray (), N_VSetVecAtIndexVec-
torArray (), and N_VNewVectorArray () for working with arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

e Two new functions were added to aid in creating custom SUNMatrix objects. The constructor SUNMat-

NewEmpty () allocates an “empty” generic SUNMatrix with the object’s content pointer and the function pointers
in the operations structure initialized to . When used in the constructor for custom objects this function will ease
the introduction of any new optional operations to the SUNMatrix API by ensuring only required operations need
to be set. Additionally, the function SUNMatCopyOps () has been added to copy the operation function pointers
between matrix objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMatrix API by ensuring all operations are copied when
cloning objects. See §7 for more details.

A new operation, SUNMatMatvecSetup (), was added to the SUNMatrix API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMatrix implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who

14

Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

have implemented custom SUNMatrix modules will need to at least update their code to set the corresponding
structure member to NULL. See §7.2 for more details.

* The generic SUNMatrix API now defines error codes to be returned by SUNMatrix operations. Operations which
return an integer flag indiciating success/failure may return different values than previously. See §7.2.1 for more
details.

¢ A new SUNMatrix (and SUNLinearSolver) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §7.9 for more details.

¢ Added new Fortran 2003 interfaces for most SUNMatrix modules. See §7 for more details on how to use the
interfaces.

SUNLinearSolver module changes

* A new function was added to aid in creating custom SUNLinearSolver objects. The constructor allocates an
“empty” generic SUNLinearSolver with the object’s content pointer and the function pointers in the operations
structure initialized to . When used in the constructor for custom objects this function will ease the introduction
of any new optional operations to the SUNLinearSolver API by ensuring only required operations need to be
set. See §8.1.8 for more details.

* The return type of the SUNLinearSolver API function has changed from to to be consistent with the type used
to store row indices in dense and banded linear solver modules.

¢ Added a new optional operation to the SUNLinearSolver API, SUNLinSolLastFlag(), that returns a for
identifying the linear solver module.

* The SUNLinearSolver API has been updated to make the initialize and setup functions optional.

* A new SUNLinearSolver (and SUNMatrix) implementation was added to facilitate the use of the SuperLU_-
DIST library with SUNDIALS. See §8.15 for more details.

* Added a new SUNLinearSolver implementation, SUNLINEARSOLVER CUSOLVERSP, which leverages the
NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on NVIDIA
GPUs.

¢ Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol_KLUGetSymbolic(),, SUN-
LinSol_KLUGetNumeric() and SUNLinSol_KLUGetCommon (), to provide user access to the underlying KLU
solver structures. See §8.5 for more details.

¢ Added new Fortran 2003 interfaces for most SUNLinearSolver modules. See §8 for more details on how to use
the interfaces.

SUNNonlinearSolver module changes

* A new function was added to aid in creating custom SUNNonlinearSolver objects. The constructor SUN-
NonlinSolSetConvTestFN() allocates an “empty” generic SUNNonlinearSolver with the object’s content
pointer and the function pointers in the operations structure initialized to . When used in the constructor for cus-
tom objects this function will ease the introduction of any new optional operations to the SUNNonlinearSolver
API by ensuring only required operations need to be set. See §9.1.7 for more details.

* To facilitate the use of user supplied nonlinear solver convergence test functions the function in the SUNNonlin-
earSolver API has been updated to take a data pointer as input. The supplied data pointer will be passed to the
nonlinear solver convergence test function on each call.

 The inputs values passed to the first two inputs of the function SUNNonlinSolSolve() in the SUNNonlinear-
Solver have been changed to be the predicted state and the initial guess for the correction to that state. Ad-
ditionally, the definitions of SUNNonlinSolLSetupFn() and SUNNonlinSolLSolveFn() in the SUNNonlin-
earSolver API have been updated to remove unused input parameters. For more information on the nonlinear
system formulation see §9.2 and for more details on the API functions see §9.

1.2. Changes from previous versions 15

User Documentation for CVODES, v6.7.0

* Added a new SUNNonlinearSolver implementation, SUNNONLINSOL_PETSC, which interfaces to the PETSc

SNES nonlinear solver API. See §9.5 for more details.

¢ Added new Fortran 2003 interfaces for most SUNNonlinearSolver modules. See §4.5 for more details on how

to use the interfaces.

1.2.23.1 CVODES changes

Fixed a bug in the CVODES constraint handling where the step size could be set below the minimum step size.

Fixed a bug in the CVODES nonlinear solver interface where the norm of the accumulated correction was not
updated when using a non-default convergence test function.

Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars for the fused
vector scale operation stopped one iteration early.

Fixed a bug where the CVodeF function would return the wrong flag under certrain cirumstances.

Fixed a bug where the CVodeF function would not return a root in CV_NORMAL_STEP mode if the root occurred
after the desired output time.

Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance, or all entries of
the vector-valued absolute tolerance array, are strictly positive. In this scenario, CVODES will remove at least
one global reduction per time step.

The CVLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function CVLsLinSysFn was added as an alternative method for evaluating the
linear system M = I — vJ.

Added new functions, CVodeGetCurrentGamma, CVodeGetCurrentState, CVodeGetCurrentStateSens,
and CVodeGetCurrentSensSolveIndex which may be useful to users who choose to provide their own non-
linear solver implementations.

Added a Fortran 2003 interface to CVODES. See Chapter §4.5 for more details.

1.2.24 Changes in v4.1.0

An additional N_Vector implementation was added for the TPETRA vector from the Trilinos library to facilitate inter-
operability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documentation
and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA enables all
examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA N_Vector is enabled).

The implementation header file cvodes_impl .h is no longer installed. This means users who are directly manipulating
the CVodeMem structure will need to update their code to use CVODES’s public API.

Python is no longer required to run make test and make test_install.

16

Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

1.2.25 Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The symbols are now included
in the CVODES library, 1ibsundials_cvodes.

1.2.26 Changes in v4.0.1

No changes were made in this release.

1.2.27 Changes in v4.0.0

CVODES?’ previous direct and iterative linear solver interfaces, CVDLS and CVSPILS, have been merged into a single
unified linear solver interface, CVLS, to support any valid SUNLinearSolver module. This includes the “DIRECT”
and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type. Details regarding how CVLS utilizes
linear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinearSolver
implementations are included in Chapter §8. All CVODES example programs and the standalone linear solver examples
have been updated to use the unified linear solver interface.

The unified interface for the new CVLS module is very similar to the previous CVDLS and CVSPILS interfaces. To
minimize challenges in user migration to the new names, the previous C routine names may still be used; these will be
deprecated in future releases, so we recommend that users migrate to the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLinearSolver implementations have been up-
dated to follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new names
are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand, SUNLinSol_LapackDense,
SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUN-
LinSol_SuperLUMT. Solver-specific “set” routine names have been similarly standardized. To minimize challenges
in user migration to the new names, the previous routine names may still be used; these will be deprecated in fu-
ture releases, so we recommend that users migrate to the new names soon. All CVODES example programs and the
standalone linear solver examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNonlin-
earSolver API This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNonlinearSolver API and SUNDIALS provided modules are described in Chapter §9
and follow the same object oriented design and implementation used by the N_Vector, SUNMatrix, and SUNLinear-
Solver modules. Currently two SUNNonlinearSolver implementations are provided, SUNNONLINSOL_NEWTON and
SUNNONLINSOL_FIXEDPOINT. These replicate the previous integrator specific implementations of a Newton iteration
and a fixed-point iteration (previously referred to as a functional iteration), respectively. Note the SUNNONLINSOL_-
FIXEDPOINT module can optionally utilize Anderson’s method to accelerate convergence. Example programs using
each of these nonlinear solver modules in a standalone manner have been added and all CVODES example programs
have been updated to use generic SUNNonlinearSolver modules.

With the introduction of SUNNonlinearSolver modules, the input parameter iter to CVodeCreate has been re-
moved along with the function CVodeSetIterType and the constants CV_NEWTON and CV_FUNCTIONAL. Instead of
specifying the nonlinear iteration type when creating the CVODES memory structure, CVODES uses the SUNNON-
LINSOL_NEWTON module implementation of a Newton iteration by default. For details on using a non-default or user-
supplied nonlinear solver see Chapters §5.1, §5.3, and §5.4. CVODES functions for setting the nonlinear solver options
(e.g., CVodeSetMaxNonlinIters) or getting nonlinear solver statistics (e.g., CVodeGetNumNonlinSolvIters) re-
main unchanged and internally call generic SUNNonlinearSolver functions as needed.

Three fused vector operations and seven vector array operations have been added to the N_Vector API. These optional
operations are disabled by default and may be activated by calling vector specific routines after creating an N_Vector

1.2. Changes from previous versions 17

User Documentation for CVODES, v6.7.0

(see Chapter §6 for more details). The new operations are intended to increase data reuse in vector operations, reduce
parallel communication on distributed memory systems, and lower the number of kernel launches on systems with ac-
celerators. The fused operations are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti and the
vector array operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorAr-
ray, N_ViirmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and N_-
VLinearCombinationVectorArray. If an N_Vector implementation defines any of these operations as NULL, then
standard N_Vector operations will automatically be called as necessary to complete the computation. Multiple updates
to NVECTOR_CUDA were made:

* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Cuda to return the local vector length.

* Added N_VGetMPIComm_Cuda to return the MPI communicator used.

* Removed the accessor functions in the namespace suncudavec.

¢ Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an N_-
VectorContent_Cuda object.

* Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels. See the function
N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda functions to ac-
commodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Raja to return the local vector length.
e Added N_VGetMPIComm_Raja to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

A new N_Vector implementation for leveraging OpenMP 4.5+ device offloading has been added, NVECTOR_OPEN-
MPDEV. See §6.15 for more details. Two changes were made in the CVODE/CVODES/ARKODE initial step size
algorithm:

1. Fixed an efficiency bug where an extra call to the right hand side function was made.

2. Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

1.2.28 Changes in v3.2.1

The changes in this minor release include the following:

* Fixed a bug in the CUDA N_Vector where the N_VInvTest operation could write beyond the allocated vector
data.

* Fixed library installation path for multiarch systems. This fix changes the default library installation path
to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib. CMAKE_IN-
STALL_LIBDIR is automatically set, but is available as a CMake option that can modified.

18 Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

1.2.29 Changes in v3.2.0

Support for optional inequality constraints on individual components of the solution vector has been added to CVODE
and CVODES. See Chapter §2 and the description of CVodeSetConstraints () for more details. Use of CVodeSet-
Constraints requires the N_Vector operations N_MinQuotient, N_VConstrMask, and N_VCompare that were not
previously required by CVODE and CVODES.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA N_Vector library to libsundials_nveccudaraja.lib from libsundials_-
nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
* CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the SUNDIALS_INDEX_SIZE
CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if CMAKE_<language>_-
COMPILER can compile MPI programs before trying to locate and use an MPI installation.

* The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPTEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system will infer the
scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred or default scheme needs
to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES
can be used to manually set the name-mangling scheme and bypass trying to infer the scheme.

¢ Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.2.30 Changes in v3.1.2

The changes in this minor release include the following:

» Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared
libraries on OSX.

* Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for
the SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

* Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

» Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in
the full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architec-
tures.

» Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally
handle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity
pattern. The sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is

1.2. Changes from previous versions 19

User Documentation for CVODES, v6.7.0

still more efficient if the user-supplied Jacobian routine allocates storage for the sum I + ~vJ manually (with zero
entries if needed).

Added new example, cvRoberts_FSA_dns_Switch.c, which demonstrates switching on/off forward sensitiv-
ity computations. This example came from the usage notes page of the SUNDIALS website.

The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by CVSpilsSet-
JacTimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be removed in the next major
release.

Changed the LICENSE install path to instdir/include/sundials.

1.2.31 Changes in v3.1.1

The changes in this minor release include the following:

Fixed a minor bug in the cvSLdet routine, where a return was missing in the error check for three inconsistent
roots.

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple
times then the solver memory was reallocated (without being freed).

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used
(to avoid compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).
Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in N_Vector and SUNMatrix header files.

Fixed an indexing bug in the CUDA N_Vector implementation of N_VWrmsNormMask and revised the RAJA
N_Vector implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build system, and user
documentation.

1.2.32 Changes in v3.1.0

Added N_Vector print functions that write vector data to a specified file (e.g., N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building with
make and installing with make install respectively.

1.2.33 Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries. Specific changes include:

Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS DlIs and Sls matrix structures in a single object-oriented API.

Added example problems demonstrating use of generic SUNMATRIX modules.

* Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK

dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented APIL

20

Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

* Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear solver
(Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU, ARK-
SPGMR) since their functionality is entirely replicated by the generic DIs/Spils interfaces and SUNLINEAR-
SOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver available
to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

* Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional N_Vector implementations were added — one for CUDA and one for RAJA vectors. These vectors are
supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to th web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit integer
data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported, otherwise
it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except for their sparse
matrix interface that now uses the new sunindextype. This new flexible capability for index types includes interfaces
to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been changed
to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in For-
tran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version infor-
mation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes, and
renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable Fortran 77
examples. These changes included changing EXAMPLES_ENABLE to EXAMPLES_ENABLE_C, changing CXX_ENABLE to
EXAMPLES_ENABLE_CXX, changing F9O_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77
option.

A bug fix was made in CVodeFree to call 1free unconditionally (if non-NULL).

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.2. Changes from previous versions 21

https://software.llnl.gov/RAJA/
https://xsdk.info

User Documentation for CVODES, v6.7.0

1.2.34 Changes in v2.9.0

Two additional N_Vector implementations were added — one for Hypre (parallel) ParVector vectors, and one for PETSc
vectors. These additions are accompanied by additions to various interface functions and to user documentation.

Each N_Vector module now includes a function, N_VGetVectorID, that returns the N_Vector module name.
A bug was fixed in the interpolation functions used in solving backward problems for adjoint sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to O in both the solver specifica-
tion function and in solver 1init function. This ensures that these solver counters are initialized upon linear solver
instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done to return integers
from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and cor-
rections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR format
when using KLU.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if input sensitivity
argument is NULL.

New examples were added for use of sparse direct solvers within sensitivity integrations and for use of OpenMP.

Minor corrections and additions were made to the CVODES solver, to the examples, to installation-related files, and to
the user documentation.

1.2.35 Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the CVODES solver. First,
in the serial case, an interface to the sparse direct solver KLU was added. Second, an interface to SuperLU_MT, the
multi-threaded version of SuperLU, was added as a thread-parallel sparse direct solver option, to be used with the
serial version of the N_Vector module. As part of these additions, a sparse matrix (CSC format) structure was added
to CVODES.

Otherwise, only relatively minor modifications were made to the CVODES solver:

In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line was added to break
out of root-search loop if the initial interval size is below the tolerance ttol.

In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an illegal input error
for DGBTRF /DGBTRS.

Some minor changes were made in order to minimize the differences between the sources for private functions in
CVODES and CVODE.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian: With a call to
CVD1sSetDenseJacFnBS or CVD1sSetBandJacFnBS, the user can specify a user-supplied Jacobian function of type
CVD1s***JacFnBS, for the case where the backward problem depends on the forward sensitivities.

In CVodeQuadSensInit, the line cv_mem->cv_£fQS_data = ... was corrected (missing Q).

In the User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph was added in Sec-
tion 6.2.9 on CVodeGetAdjY. In the example cvsRoberts_ASAi_dns, the output was revised to include the use of
CVodeGetAdjY.

Two minor bugs were fixed regarding the testing of input on the first call to CVode — one involving tstop and one
involving the initialization of *tret.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward sensitivities, options
have been added to allow for user-supplied pset, psolve, and jtimes functions.

22 Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX, SQR, RAbs, RSqrt,
RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs, SUNRsqrt, SUNRexp, SRpowerI,
and SUNRpowerR, respectively. These names occur in both the solver and example programs.

In the example cvsHessian_ASA_FSA, an error was corrected in the function £B2: y2 in place of y3 in the third term
of Ith(yBdot,6).

Two new N_Vector modules have been added for thread-parallel computing environments — one for OpenMP, denoted
NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation is being dropped,
in favor of the CMake mode, which is considered more widely portable.

1.2.36 Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, bandwidth parameters,
related internal indices, pivot arrays, and the optional output 1sflag have all been changed from type int to type long
int, except for the problem size and bandwidths in user calls to routines specifying BLAS/LAPACK routines for the
dense/band linear solvers. The function NewIntArray is replaced by a pair NewIntArray / NewLintArray, for int
and long int arrays, respectively. In a minor change to the user interface, the type of the index which in CVODES
was changed from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.

A large number of minor errors have been fixed. Among these are the following: In CVSetTgBDF, the logic was
changed to avoid a divide by zero. After the solver memory is created, it is set to zero before being filled. In each linear
solver interface function, the linear solver memory is freed on an error return, and the **Free function now includes a
line setting to NULL the main memory pointer to the linear solver memory. In the rootfinding functions CVRcheck1 /
CVRcheck2, when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of shifting the
t location t1lo slightly. In the installation files, we modified the treatment of the macro SUNDIALS_USE_GENERIC_-
MATH, so that the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

1.2.37 Changes in v2.6.0

Two new features related to the integration of ODE IVP problems were added in this release: (a) a new linear solver
module, based on BLAS and LAPACK for both dense and banded matrices, and (b) an option to specify which direction
of zero-crossing is to be monitored while performing rootfinding.

This version also includes several new features related to sensitivity analysis, among which are: (a) support for in-
tegration of quadrature equations depending on both the states and forward sensitivity (and thus support for forward
sensitivity analysis of quadrature equations), (b) support for simultaneous integration of multiple backward problems
based on the same underlying ODE (e.g., for use in an forward-over-adjoint method for computing second order deriva-
tive information), (c) support for backward integration of ODEs and quadratures depending on both forward states and
sensitivities (e.g., for use in computing second-order derivative information), and (d) support for reinitialization of the
adjoint module.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization of all linear solver
modules into two families (besides the existing family of scaled preconditioned iterative linear solvers, the direct solvers,
including the new LAPACK-based ones, were also organized into a direct family); (b) maintaining a single pointer to
user data, optionally specified through a Set-type function; and (c) a general streamlining of the preconditioner modules
distributed with the solver. Moreover, the prototypes of all functions related to integration of backward problems were
modified to support the simultaneous integration of multiple problems. All backward problems defined by the user are
internally managed through a linked list and identified in the user interface through a unique identifier.

1.2. Changes from previous versions 23

User Documentation for CVODES, v6.7.0

1.2.38 Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3). At the user
interface level, the main impact is in the mechanism of including SUNDIALS header files which must now include the
relative path (e.g. #include <cvode/cvode.h>). Additional changes were made to the build system: all exported
header files are now installed in separate subdirectories of the instaltion include directory.

In the adjoint solver module, the following two bugs were fixed: in CVodeF the solver was sometimes incorrectly taking
an additional step before returning control to the user (in CV_NORMAL mode) thus leading to a failure in the interpolated
output function; in CVodeB, while searching for the current check point, the solver was sometimes reaching outside the
integration interval resulting in a segmentation fault.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were modified to
work for rectangular m X n matrices (m < n), while the factorization and solution functions were renamed to
DenseGETRF / denGETRF and DenseGETRS / denGETRS, respectively. The factorization and solution functions in
the generic band linear solver were renamed BandGBTRF and BandGBTRS, respectively.

1.2.39 Changes in v2.4.0

CVSPBCG and CVSPTFQMR modules have been added to interface with the Scaled Preconditioned Bi-CGstab (SP-
BCG) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR) linear solver modules, respec-
tively (for details see Chapter §5.1). At the same time, function type names for Scaled Preconditioned Iterative Linear
Solvers were added for the user-supplied Jacobian-times-vector and preconditioner setup and solve functions.

A new interpolation method was added to the CVODES adjoint module. The function CVadjMalloc has an additional
argument which can be used to select the desired interpolation scheme.

The deallocation functions now take as arguments the address of the respective memory block pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding unique prefixes
(cvodes_ and sundials_). When using the default installation procedure, the header files are exported under various
subdirectories of the target include directory. For more details see Appendix §11.

1.2.40 Changes in v2.3.0

A minor bug was fixed in the interpolation functions of the adjoint CVODES module.

1.2.41 Changes in v2.2.0

The user interface has been further refined. Several functions used for setting optional inputs were combined into a
single one. An optional user-supplied routine for setting the error weight vector was added. Additionally, to resolve
potential variable scope issues, all SUNDIALS solvers release user data right after its use. The build systems has been
further improved to make it more robust.

24 Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

1.2.42 Changes in v2.1.2

A bug was fixed in the CVode function that was potentially leading to erroneous behaviour of the rootfinding procedure
on the integration first step.

1.2.43 Changes in v2.1.1

This CVODES release includes bug fixes related to forward sensitivity computations (possible loss of accuray on a
BDF order increase and incorrect logic in testing user-supplied absolute tolerances). In addition, we have added the
option of activating and deactivating forward sensitivity calculations on successive CVODES runs without memory
allocation/deallocation.

Other changes in this minor SUNDIALS release affect the build system.

1.2.44 Changes in v2.1.0

The major changes from the previous version involve a redesign of the user interface across the entire SUNDIALS
suite. We have eliminated the mechanism of providing optional inputs and extracting optional statistics from the solver
through the iopt and ropt arrays. Instead, CVODES now provides a set of routines (with prefix CVodeSet) to change
the default values for various quantities controlling the solver and a set of extraction routines (with prefix CVodeGet)
to extract statistics after return from the main solver routine. Similarly, each linear solver module provides its own set
of Set- and Get-type routines. For more details see §5.1.5.10 and §5.1.5.12.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians, preconditioner infor-
mation, and sensitivity right hand sides) were simplified by reducing the number of arguments. The same information
that was previously accessible through such arguments can now be obtained through Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed during the integration
of the ODE system.

Installation of CVODES (and all of SUNDIALS) has been completely redesigned and is now based on configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided as a separate
document. We expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of CVODES. The most casual user, with a small IVP problem only, can
get by with reading §2.1, then Chapter §5.1 up to §5.2 only, and looking at examples in [56]. In addition, to solve a
forward sensitivity problem the user should read §2.7, followed by Chapter §5.3 and look at examples in [56].

In a different direction, a more expert user with an IVP problem may want to (a) use a package preconditioner (§5.2.7),
(b) supply his/her own Jacobian or preconditioner routines (§5.1.6), (c) do multiple runs of problems of the same
size (CVodeReInit()), (d) supply a new N_Vector module (§6), or even (e) supply new SUNLinearSolver and/or
SUNMatrix modules (Chapters §7 and §8). An advanced user with a forward sensitivity problem may also want to
(a) provide his/her own sensitivity equations right-hand side routine §5.3.3, (b) perform multiple runs with the same
number of sensitivity parameters (§5.3.2.1, or (c) extract additional diagnostic information (§5.3.2.7). A user with
an adjoint sensitivity problem needs to understand the IVP solution approach at the desired level and also go through
§2.8 for a short mathematical description of the adjoint approach, Chapter §5.4 for the usage of the adjoint module in
CVODES, and the examples in [56].

The structure of this document is as follows:

1.3. Reading this User Guide 25

User Documentation for CVODES, v6.7.0

In Chapter §2, we give short descriptions of the numerical methods implemented by CVODES for the solution
of initial value problems for systems of ODEs, continue with short descriptions of preconditioning §2.3, stability
limit detection (§2.4), and rootfinding (§2.5), and conclude with an overview of the mathematical aspects of
sensitivity analysis, both forward (§2.7) and adjoint (§2.8).

The following chapter describes the structure of the SUNDIALS suite of solvers (§3) and the software organiza-
tion of the CVODES solver (§3.1).

Chapter §5.1 is the main usage document for CVODES for simulation applications. It includes a complete
description of the user interface for the integration of ODE initial value problems. Readers that are not interested
in using CVODES for sensitivity analysis can then skip the next two chapters.

Chapter §5.3 describes the usage of CVODES for forward sensitivity analysis as an extension of its IVP integra-
tion capabilities. We begin with a skeleton of the user main program, with emphasis on the steps that are required
in addition to those already described in Chapter §5.1. Following that we provide detailed descriptions of the
user-callable interface routines specific to forward sensitivity analysis and of the additonal optional user-defined
routines.

Chapter §5.4 describes the usage of CVODES for adjoint sensitivity analysis. We begin by describing the
CVODES checkpointing implementation for interpolation of the original IVP solution during integration of the
adjoint system backward in time, and with an overview of a user’s main program. Following that we provide com-
plete descriptions of the user-callable interface routines for adjoint sensitivity analysis as well as descriptions of
the required additional user-defined routines.

Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, and details on the N_Vector implementations provided with SUNDIALS.

Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS: a dense implementation
(§§7.3), a banded implementation (§§7.6) and a sparse implementation (§§7.8).

Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

Finally, in the appendices, we provide detailed instructions for the installation of CVODES, within the structure
of SUNDIALS (Appendix §11), as well as a list of all the constants used for input to and output from CVODES
functions (Appendix §12).

Finally, the reader should be aware of the following notational conventions in this user guide: program listings and
identifiers (such as CVodeInit) within textual explanations appear in typewriter type style; fields in C structures (such
as content) appear in italics; and packages or modules, such as CVDLS, are written in all capitals.

Warning: Usage and installation instructions that constitute important warnings are marked in yellow boxes like
this one.

26

Chapter 1. Introduction

User Documentation for CVODES, v6.7.0

1.4 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2023, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

1.4. SUNDIALS License and Notices 27

User Documentation for CVODES, v6.7.0

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

28 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

CVODES solves ODE initial value problems (IVPs) in real /V-space, which we write in the abstract form

y=f(t,y), ylto) =1yo (2.1

where y € R¥ and f : R x RY — R¥. Here we use ¢ to denote dy/dt. While we use ¢ to denote the independent
variable, and usually this is time, it certainly need not be. CVODES solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time constant is small
compared to the time scale of the solution itself.

For problems (2.1) where the analytical solution y(¢) satisfies an implicit constraint g(¢,y) = 0 (including the initial
condition, g(to, yo) = 0) for g(¢,y) : R x RN — RM with M < N, CVODES may be configured to explicitly enforce
these constraints via solving the modified problem

) = ta) tg) =)
y=fty), ylto) =0 2.2)
0=g(t,y).
Additionally, if (2.1) depends on some parameters p € RN ? ie.
! = t7)
y=f(ty, p) 23)

y(to) = vo(p),

CVODES can also compute first order derivative information, performing either forward sensitivity analysis or adjoint
sensitivity analysis. In the first case, CVODES computes the sensitivities of the solution with respect to the parameters
p, while in the second case, CVODES computes the gradient of a derived function with respect to the parameters p.

2.1 IVP solution

The methods used in CVODES are variable-order, variable-step multistep methods, based on formulas of the form
K Ko
> iy by Bui" T =0, 24)
i=0 i=0

Here the y™ are computed approximations to y(¢,,), and h,, = t,, — t,,_1 is the step size. The user of CVODES must
choose appropriately one of two multistep methods. For nonstiff problems, CVODES includes the Adams-Moulton
formulas, characterized by K; = 1 and K5 = g—1 above, where the order ¢ varies between 1 and 12. For stiff problems,
CVODES includes the Backward Differentiation Formulas (BDF) in so-called fixed-leading coefficient (FLC) form,
given by K1 = q and Ky = 0, with order ¢ varying between 1 and 5. The coefficients are uniquely determined by the
method type, its order, the recent history of the step sizes, and the normalization «,, o = —1. See [18] and [42].

29

User Documentation for CVODES, v6.7.0

For either choice of formula, a nonlinear system must be solved (approximately) at each integration step. This nonlinear
system can be formulated as either a rootfinding problem

Fy")=y" = hnBnof(tn,y") —an =0, (2.5)

or as a fixed-point problem
G(") = haBrof(tn, y") +an =y". (2.6)

where a, = >, (¥ " + B Bn " 0).

In the process of controlling errors at various levels, CVODES uses a weighted root-mean-square norm, denoted | -
|wrwms, for all error-like quantities. The multiplicative weights used are based on the current solution and on the relative
and absolute tolerances input by the user, namely

W; = 1/[rtol - |y;| + atol;] . 2.7

Because 1/, represents a tolerance in the component y;, a vector whose norm is 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

2.1.1 Nonlinear Solve

CVODES provides several nonlinear solver choices as well as the option of using a user-defined nonlinear solver (see
§9). By default CVODES solves (2.5) with a Newton iteration which requires the solution of linear systems

M[yn(m-&-l) _ yn(m)] — _F(yn('m)) (2.8)

in which
M~I—~J, J=0f/0y, and ~v=h,0ho- 2.9)

The exact variation of the Newton iteration depends on the choice of linear solver and is discussed below and in §9.3.
For nonstiff systems, a fixed-point iteration (previously referred to as a functional iteration in this guide) solving (2.6)
is also available. This involves evaluations of f only and can (optionally) use Anderson’s method [9, 30, 49, 62] to
accelerate convergence (see §9.4 for more details). For any nonlinear solver, the initial guess for the iteration is a
predicted value y™(°) computed explicitly from the available history data.

For nonlinear solvers that require the solution of the linear system (2.8) (e.g., the default Newton iteration), CVODES
provides several linear solver choices, including the option of a user-supplied linear solver module (see §8). The linear
solver modules distributed with SUNDIALS are organized in two families, a direct family comprising direct linear
solvers for dense, banded, or sparse matrices, and a spils family comprising scaled preconditioned iterative (Krylov)
linear solvers. The methods offered through these modules are as follows:

 dense direct solvers, including an internal implementation, an interface to BLAS/LAPACK, an interface to
MAGMA [58] and an interface to the oneMKL library [2],

* band direct solvers, including an internal implementation or an interface to BLAS/LAPACK,

* sparse direct solver interfaces to various libraries, including KLU [3, 23], SuperLU_MT [8, 25, 46], SuperLU_-
Dist [7, 33, 47, 48], and cuSPARSE [6],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or

30 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v6.7.0

* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are often not feasible, the combination of a BDF integrator and a precon-
ditioned Krylov method yields a powerful tool because it combines established methods for stiff integration, nonlinear
iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form
of the user-supplied preconditioner matrix [15].

In addition, CVODES also provides a linear solver module which only uses a diagonal approximation of the Jacobian
matrix.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton iteration, in that the
iteration matrix M is fixed throughout the nonlinear iterations. However, in the case that a matrix-free iterative linear
solver is used, the default Newton iteration is an Inexact Newton iteration, in which M is applied in a matrix-free
manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied routine. With the
default Newton iteration, the matrix M and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,

* more than 20 steps have been taken since the last update,

* the value 7 of ~ at the last update satisfies |v/5 — 1| > 0.3,
 anon-fatal convergence failure just occurred, or

* an error test failure just occurred.

When an update of M or P occurs, it may or may not involve a reevaluation of J (in M) or of Jacobian data (in P),
depending on whether Jacobian error was the likely cause of the update. Reevaluating J (or instructing the user to
update Jacobian data in P) occurs when:

e starting the problem,
» more than 50 steps have been taken since the last evaluation,

* aconvergence failure occurred with an outdated matrix, and the value 7 of -y at the last update satisfies |y/7—1| <
0.2, or

* a convergence failure occurred that forced a step size reduction.

The default stopping test for nonlinear solver iterations is related to the subsequent local error test, with the goal of
keeping the nonlinear iteration errors from interfering with local error control. As described below, the final computed
value y"("™) will have to satisfy a local error test ||y™("™) —™(0)|| < €. Letting 4" denote the exact solution of (2.5), we
want to ensure that the iteration error y™ — y™(") is small relative to e, specifically that it is less than 0.1¢. (The safety
factor 0.1 can be changed by the user.) For this, we also estimate the linear convergence rate constant R as follows. We
initialize R to 1, and reset R = 1 when M or P is updated. After computing a correction d,,, = 3™("™) — 4*(m=1) e
update Rif m > 1 as

R = max{0.3R, [[0m]|/[|om—1]}-
Now we use the estimate
L R o e R e T (S 1 [
Therefore the convergence (stopping) test is
R|[6m|| < 0.1€.

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration diverged if any
10 I/ 10m—1]] > 2 with m > 1. If convergence fails with JJ or P current, we are forced to reduce the step size, and
we replace h,, by h, = n¢t * hy, where the default is 7. = 0.25. The integration is halted after a preset number of
convergence failures; the default value of this limit is 10, but this can be changed by the user.

2.1. IVP solution 31

User Documentation for CVODES, v6.7.0

When an iterative method is used to solve the linear system, its errors must also be controlled, and this also involves
the local error test constant. The linear iteration error in the solution vector §,, is approximated by the preconditioned
residual vector. Thus to ensure (or attempt to ensure) that the linear iteration errors do not interfere with the nonlinear
error and local integration error controls, we require that the norm of the preconditioned residual be less than 0.05 -
(0.1e).

When the Jacobian is stored using either the SUNMATRIX _DENSE or SUNMATRIX_BAND matrix objects, the Jaco-
bian may be supplied by a user routine, or approximated by difference quotients, at the user’s option. In the latter case,
we use the usual approximation

Jij = filt,y +oje5) — fi(t,y)]/oj .

The increments o; are given by
oj = max{ﬁ |yj|,00/Wj} ,

where U is the unit roundoff, o is a dimensionless value, and WV, is the error weight defined in (2.7). In the dense case,
this scheme requires /N evaluations of f, one for each column of .J. In the band case, the columns of .J are computed
in groups, by the Curtis-Powell-Reid algorithm, with the number of f evaluations equal to the bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both, with user-supplied
routines for the preconditioning setup and solve operations, and optionally also for the required matrix-vector products
Juv. If a routine for Jv is not supplied, these products are computed as

Jv=[f(t,y+ov)— f(t,y)]/o. (2.10)

The increment o is 1/||v]|, so that ov has norm 1.

2.1.2 Local Error Test

A critical part of CVODES — making it an ODE “solver” rather than just an ODE method, is its control of local
error. Atevery step, the local error is estimated and required to satisfy tolerance conditions, and the step is redone with
reduced step size whenever that error test fails. As with any linear multistep method, the local truncation error LTE, at
order g and step size h, satisfies an asymptotic relation

LTE = Ch9+1yatD) 4 O(h+2)

for some constant C', under mild assumptions on the step sizes. A similar relation holds for the error in the predictor
™), These are combined to get a relation

LTE = C'[y" — y" O] + O(h?*?).

The local error test is simply |[LTE| < 1. Using the above, it is performed on the predictor-corrector difference A,, =
y™m) — y(0) (with y™("™) the final iterate computed), and takes the form

1An]l < e=1/1C".

32 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v6.7.0

2.1.3 Step Size and Order Selection

If the local error test passes, the step is considered successful. If it fails, the step is rejected and a new step size h' is
computed based on the asymptotic behavior of the local error, namely by the equation

(BRI H[Al = €/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails three times, the
order ¢ is reset to 1 (if ¢ > 1), or the step is restarted from scratch (if ¢ = 1). The ratio n = h’/h is limited above
t0 Nmax_ef (default 0.2) after two error test failures, and limited below to 7min o (default 0.1) after three. After seven
failures, CVODES returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODES periodically adjusts the order, with the goal
of maximizing the step size. The integration starts out at order 1 and varies the order dynamically after that. The basic
idea is to pick the order ¢ for which a polynomial of order g best fits the discrete data involved in the multistep method.
However, if either a convergence failure or an error test failure occurred on the step just completed, no change in step
size or order is done. At the current order g, selecting a new step size is done exactly as when the error test fails, giving
a tentative step size ratio

W [h = (e/6] A +D =,

We consider changing order only after taking ¢ + 1 steps at order ¢, and then we consider only orders ¢’ = ¢ — 1 (if
q > 1)orq = q+ 1 (if ¢ < 5). The local truncation error at order ¢’ is estimated using the history data. Then a
tentative step size ratio is computed on the basis that this error, LTE(q’), behaves asymptotically as he'*+1. With safety
factors of 1/6 and 1/10 respectively, these ratios are:

h'/h = [1/6||LTE(q — 1)|[]"/* = 1y
and
R /h = [1/10|LTE(g + D[]/ = gy .
The new order and step size are then set according to

n = max{nq—1, Mg, Ng+17 »

with ¢’ set to the index achieving the above maximum. However, if we find that < 7max g (default 1.5), we do not
bother with the change. Also, 7 is always limited to 9max_gs (default 10), except on the first step, when it is limited to
Thmax_fs = 104‘

The various algorithmic features of CVODES described above, as inherited from VODE and VODPK, are documented
in [14, 17, 38]. They are also summarized in [39].

Normally, CVODES takes steps until a user-defined output value ¢ = ¢, is overtaken, and then it computes y(tou) by
interpolation. However, a “one step”” mode option is available, where control returns to the calling program after each
step. There are also options to force CVODES not to integrate past a given stopping point ¢ = tyop.

2.1.4 Inequality Constraints

CVODES permits the user to impose optional inequality constraints on individual components of the solution vector
y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0, or y; < 0. The constraint satisfaction
is tested after a successful nonlinear system solution. If any constraint fails, we declare a convergence failure of the
Newton iteration and reduce the step size. Rather than cutting the step size by some arbitrary factor, CVODES estimates
anew step size k' using a linear approximation of the components in y that failed the constraint test (including a safety
factor of 0.9 to cover the strict inequality case). If a step fails to satisfy the constraints repeatedly within a step attempt
or fails with the minimum step size then the integration is halted and an error is returned. In this case the user may
need to employ other strategies as discussed in §5.1.5.2 to satisfy the inequality constraints.

2.1. IVP solution 33

User Documentation for CVODES, v6.7.0

2.2 IVPs with constraints

For IVPs whose analytical solutions implicitly satisfy constraints as in (2.2), CVODES ensures that the solution satisfies
the constraint equation by projecting a successfully computed time step onto the invariant manifold. As discussed in
[29] and [57], this approach reduces the error in the solution and retains the order of convergence of the numerical
method. Therefore, in an attempt to advance the solution to a new point in time (i.e., taking a new integration step),
CVODES performs the following operations:

1. predict solution
2. solve nonlinear system and correct solution
3. project solution

4. test error

5. select order and step size for next step

and includes several recovery attempts in case there are convergence failures (or difficulties) in the nonlinear solver or
in the projection step, or if the solution fails to satisfy the error test. Note that at this time projection is only supported
with BDF methods and the projection function must be user-defined. See §5.1.5.8 and CVodeSetProjFn() for more
information on providing a projection function to CVODE.

When using a coordinate projection method the solution y,, is obtained by projecting (orthogonally or otherwise) the
solution y,, from step 2 above onto the manifold given by the constraint. As such y,, is computed as the solution of the
nonlinear constrained least squares problem

minimize ||yn — Jn|

2.11
subjectto g(tn,yn) = 0. @11

The solution of (2.11) can be computed iteratively with a Newton method. Given an initial guess y7(,,0) the iterations are
computed as

it =yl + sy

n
where the increment 5y§f) is the solution of the least-norm problem
minimize ||dy{V|

subject to G, y%) 6y = —g(tn,y)

n

2.12)

where G(t,y) = 0g(t,y)/0y.

If the projected solution satisfies the error test then the step is accepted and the correction to the unprojected solution,
Ap = Yn — Un, is used to update the Nordsieck history array for the next step.

2.3 Preconditioning

When using a nonlinear solver that requires the solution of the linear system, e.g., the default Newton iteration (§9.3),
CVODES makes repeated use of a linear solver to solve linear systems of the form Mx = —r, where z is a correction
vector and 7 is a residual vector. If this linear system solve is done with one of the scaled preconditioned iterative linear
solvers supplied with SUNDIALS, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Az = b can be preconditioned
on the left, as (P~ ' A)z = P~'b; on the right, as (AP~') Pz = b; or on both sides, as (P; ' APy ') Prx = P; 'b.
The Krylov method is then applied to a system with the matrix P~' A, or AP~!, or P; ' APy, instead of A. In order
to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product P;, Pr, in the last case,
should in some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the matrix

34 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v6.7.0

P, or matrices Pr, and Pg, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for example,
see [15] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for preconditioning either side, or on both sides,
although we know of no situation where preconditioning on both sides is clearly superior to preconditioning on one side
only (with the product P, Pr). Moreover, for a given preconditioner matrix, the merits of left vs. right preconditioning
are unclear in general, and the user should experiment with both choices. Performance will differ because the inverse
of the left preconditioner is included in the linear system residual whose norm is being tested in the Krylov algorithm.
As a rule, however, if the preconditioner is the product of two matrices, we recommend that preconditioning be done
either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with CVODES are based on approximations to the system Jacobian, J = Jf/dy. Since
the matrix involved is M = I —~.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = I — ~.J. Because the Krylov iteration occurs within a nonlinear solver iteration and further also within
a time integration, and since each of these iterations has its own test for convergence, the preconditioner may use a
very crude approximation, as long as it captures the dominant numerical feature(s) of the system. We have found that
the combination of a preconditioner with the Newton-Krylov iteration, using even a fairly poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.4 BDF stability limit detection

CVODES includes an algorithm, STALD (STAbility Limit Detection), which provides protection against potentially
unstable behavior of the BDF multistep integration methods in certain situations, as described below.

When the BDF option is selected, CVODES uses Backward Differentiation Formula methods of orders 1 to 5. At order
1 or 2, the BDF method is A-stable, meaning that for any complex constant A in the open left half-plane, the method
is unconditionally stable (for any step size) for the standard scalar model problem §y = Ay. For an ODE system, this
means that, roughly speaking, as long as all modes in the system are stable, the method is also stable for any choice of
step size, at least in the sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case, in order for the
method to be stable at step size h on the scalar model problem, the product hA must lie within a region of absolute
stability. That region excludes a portion of the left half-plane that is concentrated near the imaginary axis. The size of
that region of instability grows as the order increases from 3 to 5. What this means is that, when running BDF at any
of these orders, if an eigenvalue A of the system lies close enough to the imaginary axis, the step sizes h for which the
method is stable are limited (at least according to the linear stability theory) to a set that prevents A\ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region is much narrower
than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly damped oscillations. A
pure undamped oscillation corresponds to an eigenvalue on the imaginary axis. Problems with modes of that kind call
for different considerations, since the oscillation generally must be followed by the solver, and this requires step sizes
(h ~ 1/v, where v is the frequency) that are stable for BDF anyway. But for a weakly damped oscillatory mode, the
oscillation in the solution is eventually damped to the noise level, and at that time it is important that the solver not be
restricted to step sizes on the order of 1/v. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection option is appropriate
are ODE systems resulting from semi-discretized PDE:s (i.e., PDEs discretized in space) with advection and diffusion,
but with advection dominating over diffusion. Diffusion alone produces pure decay modes, while advection tends to
produce undamped oscillatory modes. A mix of the two with advection dominant will have weakly damped oscillatory
modes.

The STALD algorithm attempts to detect, in a direct manner, the presence of a stability region boundary that is limiting
the step sizes in the presence of a weakly damped oscillation [36]. The algorithm supplements (but differs greatly from)

2.4. BDF stability limit detection 35

User Documentation for CVODES, v6.7.0

the existing algorithms in CVODES for choosing step size and order based on estimated local truncation errors. The
STALD algorithm works directly with history data that is readily available in CVODES. If it concludes that the step
size is in fact stability-limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The STALD algorithm has been tested in combination with the VODE solver on linear advection-dominated
advection-diffusion problems [37], where it works well. The implementation in CVODES has been successfully tested
on linear and nonlinear advection-diffusion problems, among others.

This stability limit detection option adds some computational overhead to the CVODES solution. (In timing tests, these
overhead costs have ranged from 2% to 7% of the total, depending on the size and complexity of the problem, with
lower relative costs for larger problems.) Therefore, it should be activated only when there is reasonable expectation
of modes in the user’s system for which it is appropriate. In particular, if a CVODES solution with this option turned
off appears to take an inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution
time scale, then there is a good chance that step sizes are being limited by stability, and that turning on the option will
improve the efficiency of the solution.

2.5 Rootfinding

The CVODES solver has been augmented to include a rootfinding feature. This means that, while integrating the Initial
Value Problem (2.1), CVODES can also find the roots of a set of user-defined functions g; (¢, y) that depend both on ¢
and on the solution vector y = y(t). The number of these root functions is arbitrary, and if more than one g; is found
to have a root in any given interval, the various root locations are found and reported in the order that they occur on the
t axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(¢, y(t)),
denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it will probably be
missed by CVODES. If such a root is desired, the user should reformulate the root function so that it changes sign at
the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to hone in on the root(s) with a modified secant method [35]. In addition, each time g is computed, CVODES
checks to see if g;(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is found at a
point £, CVODES computes g at ¢ 4+ ¢ for a small increment J, slightly further in the direction of integration, and if
any g;(t + d) = 0 also, CVODES stops and reports an error. This way, each time CVODES takes a time step, it is
guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, CVODES
has an interval (¢;,, tn;] in which roots of the g;(¢) are to be sought, such that ¢; is further ahead in the direction of
integration, and all g;(¢;,) # 0. The endpoint 5 is either ¢,,, the end of the time step last taken, or the next requested
output time t,, if this comes sooner. The endpoint ¢;, is either ¢,,_1, the last output time ¢, (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,, if
an exact zero was found. The algorithm checks g; at tj; for zeros and for sign changes in (¢, t;). If no sign changes
were found, then either a root is reported (if some g;(¢5,;) = 0) or we proceed to the next time interval (starting at ¢5;).
If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance, given
by

7 =100 U * (|t,| + |h]) (U = unit roundof) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (¢tn:)|/|9: (tni) — g:(ti0)], corresponding to the closest to ¢;, of the secant method
values. At each pass through the loop, a new value t,,;4 is set, strictly within the search interval, and the values of
9i(tmia) are checked. Then either ¢;, or tp; is reset to ¢,,;4 according to which subinterval is found to include the sign
change. If there is none in (¢;,, t;niq) but some g;(tmiq) = 0, then that root is reported. The loop continues until
|thi — tio| < 7, and then the reported root location is tp;.

36 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v6.7.0

In the loop to locate the root of g;(t), the formula for ¢,,;4 is
tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,;4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs. high, i.e., toward ¢;, vs. toward ¢5;) in
which the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two
sides were the same, « is halved (if on the low side) or doubled (if on the high side). The value of t,,;4 is closer to
1, when o < 1 and closer to t;,; when o > 1. If the above value of ¢,,;4 is within 7/2 of ¢;, or ¢, it is adjusted
inward, such that its fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being
the midpoint), and the actual distance from the endpoint is at least /2.

2.6 Pure Quadrature Integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity analysis run
(see §2.8) it is of interest to compute integral quantities of the form

2(t) = / q(t,y(7),p)dr. (2.13)

to

The most effective approach to compute z(t) is to extend the original problem with the additional ODEs (obtained by
applying Leibnitz’s differentiation rule):

2:q(t7yap)7 Z(t()):O

Note that this is equivalent to using a quadrature method based on the underlying linear multistep polynomial repre-
sentation for y(t).

This can be done at the “user level” by simply exposing to CVODES the extended ODE system (2.3) + (2.13). However,
in the context of an implicit integration solver, this approach is not desirable since the nonlinear solver module will
require the Jacobian (or Jacobian-vector product) of this extended ODE. Moreover, since the additional states z do not
enter the right-hand side of the ODE (2.13) and therefore the right-hand side of the extended ODE system, it is much
more efficient to treat the ODE system (2.13) separately from the original system (2.3) by “taking out” the additional
states z from the nonlinear system (2.5) that must be solved in the correction step of the LMM. Instead, “corrected”
values 2" are computed explicitly as

Qn .0

)

K2 Kl
1 o By
Zn = - (hnﬁn,oq(t'ru ynap) + hn Zﬂn,izn ! + Z an,izn Z))
i=1 i=1

once the new approximation y" is available.

The quadrature variables z can be optionally included in the error test, in which case corresponding relative and absolute
tolerances must be provided.

2.7 Forward Sensitivity Analysis

Typically, the governing equations of complex, large-scale models depend on various parameters, through the right-
hand side vector and/or through the vector of initial conditions, as in (2.3). In addition to numerically solving the ODEs,
it may be desirable to determine the sensitivity of the results with respect to the model parameters. Such sensitivity
information can be used to estimate which parameters are most influential in affecting the behavior of the simulation
or to evaluate optimization gradients (in the setting of dynamic optimization, parameter estimation, optimal control,
etc.).

2.6. Pure Quadrature Integration 37

User Documentation for CVODES, v6.7.0

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) = dy(t)/Op; and satisfies
the following forward sensitivity equations (or sensitivity equations for short):

of | of oy 9y(p)
dy S opi’ silfo) = Op;

, (2.14)

5 =

obtained by applying the chain rule of differentiation to the original ODEs (2.3).

When performing forward sensitivity analysis, CVODES carries out the time integration of the combined system, (2.3)
and (2.14), by viewing it as an ODE system of size N (N, + 1), where N is the number of model parameters p;, with
respect to which sensitivities are desired (Vg < NN,). However, major improvements in efficiency can be made by
taking advantage of the special form of the sensitivity equations as linearizations of the original ODEs. In particular,
for stiff systems, for which CVODES employs a Newton iteration, the original ODE system and all sensitivity systems
share the same Jacobian matrix, and therefore the same iteration matrix M in (2.9).

The sensitivity equations are solved with the same linear multistep formula that was selected for the original ODEs and,
if Newton iteration was selected, the same linear solver is used in the correction phase for both state and sensitivity
variables. In addition, CVODES offers the option of including (full error control) or excluding (partial error control)
the sensitivity variables from the local error test.

2.7.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the combined ODE and
sensitivity system for the vector § = [y, $1, ..., Sn.]-

* Staggered Direct

In this approach [21], the nonlinear system (2.5) is first solved and, once an acceptable numerical solution is
obtained, the sensitivity variables at the new step are found by directly solving (2.14) after the (BDF or Adams)
discretization is used to eliminate s;. Although the system matrix of the above linear system is based on exactly
the same information as the matrix M in (2.9), it must be updated and factored at every step of the integration, in
contrast to an evalutaion of M which is updated only occasionally. For problems with many parameters (relative
to the problem size), the staggered direct method can outperform the methods described below [45]. However,
the computational cost associated with matrix updates and factorizations makes this method unattractive for
problems with many more states than parameters (such as those arising from semidiscretization of PDEs) and is
therefore not implemented in CVODES.

e Simultaneous Corrector

In this method [50], the discretization is applied simultaneously to both the original equations (2.3) and the
sensitivity systems (2.14) resulting in the following nonlinear system

F(gn) = gn - hnﬁn,Of(tn; gn) - dn = 07

where f = [f(t,y,p)s ..., (Of JOy)(t,y,p)si + (Of /Opi)(t,y,p),...], and &, is comprised of the terms in the
discretization that depend on the solution at previous integration steps. This combined nonlinear system can be
solved using a modified Newton method as in (2.8) by solving the corrector equation

at each iteration, where
M
*")/Jl M
M — —’YJQ 0 M ,
*’YJNS 0 . 0 M

38 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v6.7.0

0 0 0
M is defined asin (2.9), and J; = a—y KJ;) S; + (81{)} . It can be shown that 2-step quadratic convergence

can be retained by using only the block-diagonal portion of M in the corrector equation (2.15). This results in a

0
decoupling that allows the reuse of M without additional matrix factorizations. However, the products (f> S5

dy
0
and the vectors —f must still be reevaluated at each step of the iterative process (2.15) to update the sensitivity
Pi
portions of the residual G.

 Staggered corrector

In this approach [31], as in the staggered direct method, the nonlinear system (2.5) is solved first using the Newton
iteration (2.8). Then a separate Newton iteration is used to solve the sensitivity system (2.14):

M[Sﬁ(m+1) _ sﬁ(m)] _

K2 ?

|:37; Y <8y (tﬂmy 7p)52 + 8pz (t"’y 7p) Qi | s

(2.16)

where a;n = 3o o(an,;js; " + hnfy,;8; 7). In other words, a modified Newton iteration is used to solve a

linear system. In this approach, the vectors (0f/0p;) need be updated only once per integration step, after the
state correction phase (2.8) has converged. Note also that Jacobian-related data can be reused at all iterations
(2.16) to evaluate the products (Of/0y)s;.

CVODES implements the simultaneous corrector method and two flavors of the staggered corrector method which
differ only if the sensitivity variables are included in the error control test. In the full error control case, the first variant
of the staggered corrector method requires the convergence of the iterations (2.16) for all IV, sensitivity systems and
then performs the error test on the sensitivity variables. The second variant of the method will perform the error test for
each sensitivity vector s;, (i = 1,2,. .., N,) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors s; fails a convergence or error
test.

An important observation is that the staggered corrector method, combined with a Krylov linear solver, effectively
results in a staggered direct method. Indeed, the Krylov solver requires only the action of the matrix M on a vector
and this can be provided with the current Jacobian information. Therefore, the modified Newton procedure (2.16) will
theoretically converge after one iteration.

2.7.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, CVODES provides an automated estimation of absolute tolerances for
the sensitivity variables based on the absolute tolerance for the corresponding state variable. The relative tolerance
for sensitivity variables is set to be the same as for the state variables. The selection of absolute tolerances for the
sensitivity variables is based on the observation that the sensitivity vector s; will have units of [y]/[p;]. With this, the
absolute tolerance for the j-th component of the sensitivity vector s; is set to atol;/|p;|, where atol; are the absolute
tolerances for the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute tolerances is
equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector s; with weights based on s;
be the same as the weighted root-mean-square norm of the vector of scaled sensitivities 5; = |p;|s; with weights based
on the state variables (the scaled sensitivities 5; being dimensionally consistent with the state variables). However, this
choice of tolerances for the s; may be a poor one, and the user of CVODES can provide different values as an option.

2.7. Forward Sensitivity Analysis 39

User Documentation for CVODES, v6.7.0

2.7.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.14): analytic evaluation,
automatic differentiation, complex-step approximation, and finite differences (or directional derivatives). CVODES
provides all the software hooks for implementing interfaces to automatic differentiation (AD) or complex-step approx-
imation; future versions will include a generic interface to AD-generated functions. At the present time, besides the
option for analytical sensitivity right-hand sides (user-provided), CVODES can evaluate these quantities using various
finite difference-based approximations to evaluate the terms (0 f /Qy)s; and (9 f /Op;), or using directional derivatives
to evaluate [(Of/0y)s; + (Of/Opi)]. As is typical for finite differences, the proper choice of perturbations is a deli-
cate matter. CVODES takes into account several problem-related features: the relative ODE error tolerance rtol, the
machine unit roundoff U, the scale factor p;, and the weighted root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0 f/Jy)s; and Of/Op; in the right-hand side of (2.14)
can be evaluated either separately:

of [ty +oysi,p) — f(t,y — aysi,p)

s 3] : 2.17)
87‘](‘ ~ f(t7yap+0-iei) _f(tvyvp_o'iei) (2 18)
Op; 20 ’ '

1
0; = |pi|v/max(rtol,U), o, =

max(1/oi, ||sill/|pil)
or simultaneously:
gS' af ~ f(t7y+03iap+03i)_f(t73/_<75i7p_0€i)
oy~ ap; 20 ’

o =min(o;, 0y),

or by adaptively switching between (2.17) + (2.18) and (2.19), depending on the relative size of the finite difference
increments o; and o,,. In the adaptive scheme, if p = max(o;/0,0,/0;), we use separate evaluations if p > ppaq
(an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o5, oy, o) and switching between finite difference and directional
derivative formulas have also been implemented for one-sided difference formulas. Forward finite differences can be
applied to (0f/0y)s; and O f/Op; separately, or the single directional derivative formula

of | of _ flt,y+osi,ptoe)— f(t,y,p)
5+ —— =
dy Op; o

can be used. In CVODES, the default value of p,,,, = 0 indicates the use of the second-order centered directional
derivative formula (2.19) exclusively. Otherwise, the magnitude of p,,,, and its sign (positive or negative) indicates
whether this switching is done with regard to (centered or forward) finite differences, respectively.

2.7.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.6), CVODES does not carry their
sensitivities automatically. Instead, we provide a more general feature through which integrals depending on both the
states y of (2.3) and the state sensitivities s; of (2.14) can be evaluated. In other words, CVODES provides support for
computing integrals of the form:

z(¢) :/l(j(T,y(T),Sl(T),...,SNP(T),p)dT.

to

If the sensitivities of the quadrature variables z of (2.13) are desired, these can then be computed by using:

inQySi_FQpiv izlv"'7Np7

40 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v6.7.0

as integrands for Z, where ¢, and ¢, are the partial derivatives of the integrand function g of (2.13).

As with the quadrature variables z, the new variables z are also excluded from any nonlinear solver phase and “cor-
rected” values z" are obtained through explicit formulas.

2.8 Adjoint Sensitivity Analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with respect to Ng param-
eters is roughly equivalent to solving an ODE system of size (1 + Ng)N. This can become prohibitively expensive,
especially for large-scale problems, if sensitivities with respect to many parameters are desired. In this situation, the
adjoint sensitivity method is a very attractive alternative, provided that we do not need the solution sensitivities s;, but
rather the gradients with respect to model parameters of a relatively few derived functionals of the solution. In other
words, if y(¢) is the solution of (2.3), we wish to evaluate the gradient dG/dp of

T
G(p) = / g(t,y,p)dt, (2.19)
to

or, alternatively, the gradient dg/dp of the function g(¢, y, p) at the final time T". The function g must be smooth enough
that dg/0y and Og/Jp exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For details on the derivation
see [20]. Introducing a Lagrange multiplier A, we form the augmented objective function

T
umzaw—z'vw—fm%mmu

where * denotes the conjugate transpose. The gradient of G with respect to p is

dG dI /T T
=5 wrasd- [NG gs-pa,
dp dp o 14) to Yy 14
where subscripts on functions f or g are used to denote partial derivatives and s = [sq,...,sy,] is the matrix of
solution sensitivities. Applying integration by parts to the term A*$, and by requiring that \ satisfy
() ()
dy dy (2.20)
ANT)=0,

the gradient of G with respect to p is nothing but

i A*(to)s(to) + (gp + X" fp)dt. (2.21)
to

The gradient of ¢(T',y,p) with respect to p can be then obtained by using the Leibnitz differentiation rule. Indeed,

from (2.19),

dg d dG

T)=——
dp() dT dp

and therefore, taking into account that dG/dp in (2.21) depends on T both through the upper integration limit and
through), and that A\(T") = 0,

dg

T
D) = (t0)a(to) + 9,(T) + /t gt (2.22)

2.8. Adjoint Sensitivity Analysis 41

User Documentation for CVODES, v6.7.0

where p is the sensitivity of A\ with respect to the final integration limit 7". Thus y satisfies the following equation,
obtained by taking the total derivative with respect to T" of (2.20):

()
- ().,

The final condition on (T follows from (9A/dt) + (OA/OT) = 0 at T, and therefore, 1u(T) = —A(T).

(2.23)

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification of the parameters p; this
implies that, once the solution A is found, the formula (2.21) can then be used to find the gradient of G with respect to
any of the parameters p. The same holds true for the system (2.23) and the formula (2.22) for gradients of g(7T',y, p).
The second important remark is that the adjoint systems (2.20) and (2.23) are terminal value problems which depend
on the solution y(¢) of the original IVP (2.3). Therefore, a procedure is needed for providing the states y obtained
during a forward integration phase of (2.3) to CVODES during the backward integration phase of (2.20) or (2.23). The
approach adopted in CVODES, based on checkpointing, is described below.

2.9 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires, at the current time,
the states y which were computed during the forward integration phase. Since CVODES implements variable-step
integration formulas, it is unlikely that the states will be available at the desired time and so some form of interpolation
is needed. The CVODES implementation being also variable-order, it is possible that during the forward integration
phase the order may be reduced as low as first order, which means that there may be points in time where only y and g are
available. These requirements therefore limit the choices for possible interpolation schemes. CVODES implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial interpolation
method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size of the vectors y and y
that would need to be stored make this approach computationally intractable. Thus, CVODES settles for a compromise
between storage space and execution time by implementing a so-called checkpointing scheme. At the cost of at most
one additional forward integration, this approach offers the best possible estimate of memory requirements for adjoint
sensitivity analysis. To begin with, based on the problem size N and the available memory, the user decides on the
number Ny of data pairs (y, ¢) if cubic Hermite interpolation is selected, or on the number Ny of y vectors in the
case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of interpolation. Then,
during the first forward integration stage, after every N, integration steps a checkpoint is formed by saving enough
information (either in memory or on disk) to allow for a hot restart, that is a restart which will exactly reproduce the
forward integration. In order to avoid storing Jacobian-related data at each checkpoint, a reevaluation of the iteration
matrix is forced before each checkpoint. At the end of this stage, we are left with IV, checkpoints, including one at ;.
During the backward integration stage, the adjoint variables are integrated from 7T to ¢y going from one checkpoint to
the previous one. The backward integration from checkpoint 7 4 1 to checkpoint ¢ is preceded by a forward integration
from ¢ to ¢ + 1 during which the N4 vectors y (and, if necessary ¥) are generated and stored in memory for interpolation
(see Fig. 2.1).

Note: The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation
at the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint,
in which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
§2.1, the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. DASPKADJOINT. The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy differences

42 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v6.7.0

are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant for the Adams

meth()d f(T WhiCh the Ordel' can reaCh 12.
\
p

Fig. 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during the integration of the
adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward integration phase to uncer-
tainty in the final number of checkpoints. However, N, is much smaller than the number of steps taken during the
forward integration, and there is no major penalty for writing/reading the checkpoint data to/from a temporary file.
Note that, at the end of the first forward integration stage, interpolation data are available from the last checkpoint to
the end of the interval of integration. If no checkpoints are necessary (/V; is larger than the number of integration steps
taken in the solution of (2.3)), the total cost of an adjoint sensitivity computation can be as low as one forward plus
one backward integration. In addition, CVODES provides the capability of reusing a set of checkpoints for multiple
backward integrations, thus allowing for efficient computation of gradients of several functionals (2.19).

Finally, we note that the adjoint sensitivity module in CVODES provides the necessary infrastructure to integrate
backwards in time any ODE terminal value problem dependent on the solution of the IVP (2.3), including adjoint
systems (2.20) or (2.23), as well as any other quadrature ODEs that may be needed in evaluating the integrals in (2.21)
or (2.22). In particular, for ODE systems arising from semi-discretization of time-dependent PDEs, this feature allows
for integration of either the discretized adjoint PDE system or the adjoint of the discretized PDE.

2.10 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute second-order deriva-
tive information. Considering the ODE problem (2.3) and some model output functional, ¢g(y) then the Hessian
d?g/dp? can be obtained in a forward sensitivity analysis setting as

d?%g .
d7pZ = (gy ® INP) Ypp + yp GyyYp »
where ® is the Kronecker product. The second-order sensitivities are solution of the matrix ODE system:

Ypp = (fy & INp) “Ypp + (IN & yg) “JyyYp
62yo
Ypp(to) = op?

where y,, is the first-order sensitivity matrix, the solution of N, systems (2.14), and y,,,, is a third-order tensor. It is easy
to see that, except for situations in which the number of parameters N, is very small, the computational cost of this
so-called forward-over-forward approach is exorbitant as it requires the solution of N,, 4 Ng additional ODE systems
of the same dimension NV as (2.3).

2.10. Second-order sensitivity analysis 43

User Documentation for CVODES, v6.7.0

Note: For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters
p. Moreover, we only consider the case in which the dependency of the original ODE (2.3) on the parameters p is
through its initial conditions only. For details on the derivation in the general case, see [51].

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-over-adjoint ap-
proach. This method is based on using the same “trick” as the one used in computing gradients of pointwise functionals
with the adjoint method, namely applying a formal directional forward derivation to one of the gradients of (2.21) or
(2.22). With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gradient with
forward sensitivity analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p) = ttof g(t,y) dt. It can be shown that the product between the Hessian of G (with
respect to the parameters p) and some vector u can be computed as

0%G
szu = [(A\T @ In,) yppu + yy 1] t=to

where)\, i, and s are solutions of
— = f'f“"’ (/\T ®In) fyys +gyyss plty) =0
—A=fIA+gl Aty =0
§=fys; s(to) = yopu

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,. The forward-
over-adjoint approach hinges crucially on the fact that s can be computed at the cost of a forward sensitivity analysis
with respect to a single parameter (the last ODE problem above) which is possible due to the linearity of the forward
sensitivity equations (2.14).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two backward integra-
tions of a system of ODE:s of size /N. For more details, including the corresponding formulas for a pointwise model
functional output, see [51].

To allow the foward-over-adjoint approach described above, CVODES provides support for:
* the integration of multiple backward problems depending on the same underlying forward problem (2.3), and

* the integration of backward problems and computation of backward quadratures depending on both the states y
and forward sensitivities (for this particular application, s) of the original problem (2.3).

44 Chapter 2. Mathematical Considerations

Chapter 3

Code Organization

SUNDIALS consists of the solvers CVODE and ARKODE for ordinary differential equation (ODE) systems, IDA
for differential-algebraic (DAE) systems, and KINSOL for nonlinear algebraic systems. In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively. The following is a list summarizes the basic functionality of each SUNDIALS
package:

* CVODE, a solver for stiff and nonstiff ODE systems § = f(t, y) based on Adams and BDF methods;

CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

» ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems M (t) y = f1(¢,y)+ f2(t,y)
based on Runge-Kutta methods;

* IDA, a solver for differential-algebraic systems F'(¢,y,y) = 0 based on BDF methods;
* IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
* KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

The various packages in the suite share many common components and are organized as a family. Fig. 3.1 gives a high-
level overview of solver packages, the shared vector, matrix, linear solver, and nonlinear solver interfaces (abstract base
classes), and the corresponding class implementations provided with SUNDIALS. For classes that provide interfaces
to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, SuperLU_DIST, hypre, PETSc, Trilinos, and Raja) users
will need to download and compile those packages independently of SUNDIALS. The directory structure is shown in
Fig. 3.2.

3.1 CVODES organization

The CVODES package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

The overall organization of the CVODES package is shown in Fig. 3.3. The basic elements of the structure are a module
for the basic integration algorithm (including forward sensitivity analysis), a module for adjoint sensitivity analysis,
and support for the solution of nonlinear and linear systems that arise in the case of a stiff system.

The central integration module, implemented in the files CVODES .h, cvode_impl.h, and CVODES. c, deals with the
evaluation of integration coefficients, estimation of local error, selection of stepsize and order, and interpolation to user
output points, among other issues.

CVODES utilizes generic linear and nonlinear solver modules defined by the SUNLinearSolver API (see Chapter §8)
and SUNNonlinearSolver API (see Chapter §9), respectively. As such, CVODES has no knowledge of the method

45

User Documentation for CVODES, v6.7.0

[CVODE] [CVODES] [ARKODE] [

J |

IDA

IDAS

] [KINSOL]

———-h

[
[
[
[
[
[
[
[

Vectors Matrlces Linear Solvers Nonllnear Solvers
Serial Parallel (MPI)] [Dense Band] Matrix-based 1 Fixed Point
PThreads] [OpenMP] [Sparse] [S';Jgf‘r)l.cu] [e][e]
LAPACK LAPACK
OpenMP DEV] [CUDA] [CcuSPARSE] [MAGMA Dense] [Dense][Band]
S LU
HIP] [RAJA] [Ginkgo Dense] [oneMKL Dense] [oy] [T]
Kokkos] [sycL] [s“[',’lesf:.‘u] [CuSOLVER]
ManyVector] [MPI ManyVectot] [MAGMA Dense] [Ginkgo]
MPI + X] [T:;:’ye';] [oneMKL Dense] [Kokkok Kernels]
PETSc] [Trilinos] Matrix-free
[SPGMR] [SPFGMR]
[SPTFQMR] [SPBCG]

Fig. 3.1: High-level diagram of the SUNDIALS suite.

46

Chapter 3. Code Organization

User Documentation for CVODES, v6.7.0

E
:
:

> arkode | || arkode |
—>| cvode | —>| cvode |
—’| cvodes | —>| cvodes |
— ida | ida |
—>| idas | —>| idas |
L[kinsol | *| kinsol |

I

I

arkode | —>| arkode |
[z]
[femix |[fmod |
N
sundials | —’| idas |
| fmod |
> sunmemory | m
" —>| nvector
—’| sunnonlinsol |
—>| sundials

Fig. 3.2: Directory structure of the SUNDIALS source tree.

N e -

3.1. CVODES organization

47

User Documentation for CVODES, v6.7.0

SUNDIALS

\ 4

[CVODES CVADJOINT]

J \

A\ 4 l
CVLS CVNLS
Linear Solver Interface Nonlinear Solver Interface
v ‘ * v
N_Vector SUNMatrix SUNLinearSolver SUNNonlinearSolver
Interface Interface Interface Interface
| Vector | | Matrix | | Linear Solver | | Nonlinear Solver |

CVDIAG - Diagonal
Linear Solver

A\ 4

Preconditioner Modules
(cveBBDPRE | [CVBANDPRE |

Fig. 3.3: Overall structure diagram of the CVODES package. Modules specific to CVODES begin with “CV” (CVLS,
CVNLS, CVDIAG, CVBBDPRE, and CVBANDPRE)), all other items correspond to generic SUNDIALS vector, ma-
trix, and solver modules.

being used to solve the linear and nonlinear systems that arise. For any given user problem, there exists a single nonlinear
solver interface and, if necessary, one of the linear system solver interfaces is specified, and invoked as needed during
the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward sensitivity equations
simultaneously with the original IVP. The sensitivity variables may be included in the local error control mechanism of
the main integrator. CVODES provides three different strategies for dealing with the correction stage for the sensitivity
variables: CV_SIMULTANEOUS, CV_STAGGERED and CV_STAGGERED1 (see §2.7 and §5.3.2.1). The CVODES package
includes an algorithm for the approximation of the sensitivity equations right-hand sides by difference quotients, but
the user has the option of supplying these right-hand sides directly.

The adjoint sensitivity module (file cvodea. c) provides the infrastructure needed for the backward integration of any
system of ODEs which depends on the solution of the original IVP, in particular the adjoint system and any quadratures
required in evaluating the gradient of the objective functional. This module deals with the setup of the checkpoints,
the interpolation of the forward solution during the backward integration, and the backward integration of the adjoint
equations.

At present, the package includes two linear solver interfaces. The primary linear solver interface, CVLS, supports
both direct and iterative linear solvers built using the generic SUNLinearSolver API (see Chapter §8). These solvers
may utilize a SUNMatrix object (see Chapter §7) for storing Jacobian information, or they may be matrix-free. Since
CVODES can operate on any valid SUNLinearSolver implementation, the set of linear solver modules available to
CVODES will expand as new SUNLinearSolver modules are developed.

Additionally, CVODES includes the diagonal linear solver interface, CVDIAG, that creates an internally generated
diagonal approximation to the Jacobian.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, CVODES includes algorithms
for their approximation through difference quotients, although the user also has the option of supplying a routine to
compute the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

48 Chapter 3. Code Organization

User Documentation for CVODES, v6.7.0

For users employing matrix-free iterative linear solvers, CVODES includes an algorithm for the approximation by
difference quotients of the product Mv. Again, the user has the option of providing routines for this operation, in two
phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [15, 17], together with the example and demonstration programs included with CVODES,
offer considerable assistance in building preconditioners.

CVODES’ linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization,
(2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solu-
tion phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the
integration, and only as required to achieve convergence.

CVODES also provides two preconditioner modules, for use with any of the Krylov iterative linear solvers. The first
one, CVBANDPRE, is intended to be used with NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS and
provides a banded difference-quotient Jacobian-based preconditioner, with corresponding setup and solve routines.
The second preconditioner module, CVBBDPRE, works in conjunction with NVECTOR_PARALLEL and generates a
preconditioner that is a block-diagonal matrix with each block being a banded matrix.

All state information used by CVODES to solve a given problem is saved in a structure, and a pointer to that structure
is returned to the user. There is no global data in the CVODES package, and so, in this respect, it is reentrant. State
information specific to the linear solver is saved in a separate structure, a pointer to which resides in the CVODES
memory structure. The reentrancy of CVODES was motivated by the anticipated multicomputer extension, but is also
essential in a uniprocessor setting where two or more problems are solved by intermixed calls to the package from
within a single user program.

3.1. CVODES organization 49

User Documentation for CVODES, v6.7.0

50 Chapter 3. Code Organization

Chapter 4

Using SUNDIALS

As discussed in §3, the six solvers packages (CVODE(S), IDA(S), ARKODE, KINSOL) that make up SUNDIALS
are built upon common classes/modules for vectors, matrices, and algebraic solvers. In addition, the six packages all
leverage some other common infrastructure, which we discuss in this section.

4.1 The SUNContext Type

New in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

The SUNContext class/type is defined in the header file sundials/sundials_context.h as

typedef struct _SUNContext *SUNContext

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:

int SUNContext_Create (void *comm, SUNContext *ctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is
private.

Arguments:

e comm — a pointer to the MPI communicator or NULL if not using MPI.

* ctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns:

e Will return < 0O if an error occurs, and zero otherwise.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(NULL, &sunctx);

(continues on next page)

51

User Documentation for CVODES, v6.7.0

(continued from previous page)

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

int SUNContext_Free(SUNContext *ctx)
Frees the SUNContext object.

Arguments:
e ctx — pointer to a valid SUNContext object, NULL upon successful return.
Returns:

¢ Will return < O if an error occurs, and zero otherwise.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

int SUNContext_GetProfiler (SUNContext ctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

» profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will be NULL
if profiling is not enabled.

Returns:
¢ Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetProfiler (SUNContext ctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Arguments:
* ctx —avalid SUNContext object.

* profiler — a SUNProfiler object to associate with this context; this is ignored if profiling is not
enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

int SUNContext_SetLogger (SUNContext ctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —avalid SUNContext object.

* logger —a SUNLogger object to associate with this context; this is ignored if profiling is not enabled.

52 Chapter 4. Using SUNDIALS

User Documentation for CVODES, v6.7.0

Returns:
e Will return < O if an error occurs, and zero otherwise.
New in version 6.2.0.

int SUNContext_GetLogger (SUNContext ctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Arguments:
e ctx —a valid SUNContext object.

* logger — [in,out] a pointer to the SUNLogger object associated with this context; will be NULL if
profiling is not enabled.

Returns:
e Will return < O if an error occurs, and zero otherwise.

New in version 6.2.0.

4.1.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

¢ Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Ttis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;

(continues on next page)

4.1. The SUNContext Type 53

User Documentation for CVODES, v6.7.0

(continued from previous page)

int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx);
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are
much cheaper than the CVODE create/free routines.

54 Chapter 4. Using SUNDIALS

User Documentation for CVODES, v6.7.0

4.1.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>

{

public:

explicit Context(void* comm = nullptr)

{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

1

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.1. The SUNContext Type

55

User Documentation for CVODES, v6.7.0

4.2 SUNDIALS Status Logging

New in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.2.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to a value greater than ® when con-
figuring SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUN-
DIALS_LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where
errors < warnings < info output < debug output < extra debug output. If it is desired that the logger is MPI-aware, then
the option SUNDIALS_LOGGING_ENABLE_MPI is set to TRUE. More details in regards to configuring SUNDIALS with
CMake can be found in §11.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: