Macaulay2 » Documentation
Packages » IntegralClosure :: integralClosure(...,Verbosity=>...)
next | previous | forward | backward | up | index | toc

integralClosure(...,Verbosity=>...) -- display a certain amount of detail about the computation

Synopsis

Description

When the computation takes a considerable time, this function can be used to decide if it will ever finish, or to get a feel for what is happening during the computation.

i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
i2 : time R' = integralClosure(R, Verbosity => 2)
 [jacobian time 0 sec #minors 3]
integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2

 [step 0: 
      radical (use minprimes) .0019819 seconds
      idlizer1:  .00594597 seconds
      idlizer2:  .00594543 seconds
      minpres:   .00595239 seconds
  time .0859814 sec  #fractions 4]
 [step 1: 
      radical (use minprimes) .0019833 seconds
      idlizer1:  .00793021 seconds
      idlizer2:  .0683991 seconds
      minpres:   .00793413 seconds
  time .0941777 sec  #fractions 4]
 [step 2: 
      radical (use minprimes) .000990417 seconds
      idlizer1:  .00892185 seconds
      idlizer2:  .00793014 seconds
      minpres:   .00594753 seconds
  time .0941468 sec  #fractions 5]
 [step 3: 
      radical (use minprimes) .00198278 seconds
      idlizer1:  .00891359 seconds
      idlizer2:  .0109046 seconds
      minpres:   .0740806 seconds
  time .105792 sec  #fractions 5]
 [step 4: 
      radical (use minprimes) .000991703 seconds
      idlizer1:  .00693921 seconds
      idlizer2:  .0118994 seconds
      minpres:   .00892432 seconds
  time .038673 sec  #fractions 5]
 [step 5: 
      radical (use minprimes) .00198442 seconds
      idlizer1:   -- used 0.496302s (cpu); 0.292662s (thread); 0s (gc)
.00594786 seconds
  time .074562 sec  #fractions 5]

o2 = R'

o2 : QuotientRing
i3 : trim ideal R'

                     3   2                     2 2    4           4         
o3 = ideal (w   z - x , w   x - w   , w   x - y z  - z  - z, w   x  - w   z,
             4,0         4,0     1,1   1,1                    4,0      1,1  
     ------------------------------------------------------------------------
                 2 2     2 3    2   3      2   3 2      4 2      2 4       2 
     w   w    - x y z - x z  - x , w    + w   x y  - x*y z  - x*y z  - 2x*y z
      4,0 1,1                       4,0    4,0                               
     ------------------------------------------------------------------------
          3           3    2      6 2    6 2
     - x*z  - x, w   x  - w    + x y  + x z )
                  4,0      1,1

o3 : Ideal of QQ[w   , w   , x..z]
                  4,0   1,1
i4 : icFractions R

       3   2 2    4
      x   y z  + z  + z
o4 = {--, -------------, x, y, z}
       z        x

o4 : List

Further information

Caveat

The exact information displayed may change.

Functions with optional argument named Verbosity: