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Abstract—The recent TAU computer-aided design (CAD) contest has
aimed to seek novel ideas for accurate and fast clock network pessimism
removal (CNPR). Unnecessary pessimism forces the static-timing analysis
(STA) tool to report worse violation than the true timing properties
owned by physical circuits, thereby misleading signoff timing into a
lower clock frequency at which circuits can operate than actual silicon
implementations. Therefore, we introduce in this paper UI-Timer, a
powerful CNPR algorithm which achieves exact accuracy and ultra-fast
runtime. Unlike existing approaches which are dominated by explicit
path search, UI-Timer proves that by implicit path representation the
amount of search effort can be significantly reduced. Our timer is
superior in both space and time saving, from which memory storage and
important timing quantities are available in constant space and constant
time per path during the search. Experimental results on industrial
benchmarks released from TAU 2014 CAD contest have justified that
UI-Timer achieved the best result in terms of accuracy and runtime over
all participating timers.

I. INTRODUCTION

The lack of accurate and fast algorithms for clock network
pessimism removal (CNPR) has been recently pointed out as a
major weakness of existing static-timing analysis (STA) tools [10].
Conventional STA tools rely on conservative dual-mode operations
to estimate early-late and late-early path slacks [7]. This mechanism,
however, imposes unnecessary pessimism due to the consideration of
delay variation along common segments of clock paths, as illustrated
in Figure 1. Unnecessary pessimism may lead to tests being marked
as failing whereas in actuality they should be passing. Thus designers
and optimization tools might be misled into an over-pessimistic
timing report. Therefore, the goal of this paper is to identify and
eliminate unwanted pessimism during STA so as to prevent true
timing properties of circuits from being skewed.
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Figure 1. Clock network pessimism incurs in the common path between the
launching clock path and the capturing clock path.

The importance and impact of CNPR are demonstrated in Figure 2.
It is observed that the number of failing tests was reduced from 642 to
less than half after the pessimism was removed. Unwanted pessimism
might force designers and optimization tools to waste a significant yet
unnecessary amount of efforts on fixing paths that meet the intended
clock frequency. Such a problem becomes even critical when design
comes to deep submicron era where data paths are shorter, clocks
are faster, and clock networks are longer to accommodate larger
and complex chips. Moreover, without pessimism removal designers

and CAD tools are no longer guaranteed to support legal turnaround
for timing-specific improvements, which dramatically degrades the
productivity. At worst, signoff timing analyzer gives rise to the
issue of “leaving performance on the table” and concludes a lower
frequency at which the circuits can operate than their actual silicon
implementations [14].
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Figure 2. Impact on clock network pessimism from a circuit in [1].

State-of-the-art CNPR algorithms are dominated by straightfor-
ward path-based methodology [6], [9], [12], [14]. Critical paths are
identified without considering the pessimism first. Then for each
path the common segment is found by a simple walk through the
corresponding launching clock path and capturing clock path. Finally,
slack of each path is adjusted by the amount of pessimism on the
common segment. The real challenge is the amount of pessimism that
needs to be removed is path-specific. The most critical path prior to
pessimism removal is not necessarily reflective of the true counterpart
(see the data-point line in Figure 2), revealing a potential drawback
that path-based methodology has the worst-case performance of
exhaustive search space in peeling the true critical paths. Accordingly,
prior works are usually too slow to handle complex designs and
unable to always identify the true critical path exactly.

In this paper we introduce UI-Timer, a powerful CNPR algorithm
which achieves exact accuracy, ultra-fast runtime, and low memory
requirement. Our contributions are summarized as follows: 1) We
introduce a theoretical framework that maps the CNPR problem to a
graph search formulation. The mapping allows the true critical path
to be directly identified through our search space, rather than the
time-consuming yet commonly-applied strategy which interleaves the
search between slack computation and pessimism retrieval. 2) Unlike
predominant explicit path search, we represent the path implicitly
using two efficient and compact data structures, namely suffix tree
and prefix tree, and yield a significant saving in both search space
and search time. 3) The effectiveness and efficiency of our timer have
been verified by TAU 2014 CAD contest [1], [10]. Comparatively,
UI-Timer confers a high degree of differential over all participating
timers in terms of accuracy and runtime.
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II. STATIC TIMING ANALYSIS

STA is a method of verifying expected timing characteristics of a
circuit. The dual-mode or early-late timing model is the most popular
convention because it accounts for various within-chip variations such
as temperature fluctuations and voltage drops [7]. The earliest and
latest timing instants that a signal reaches are quantified as earliest
and latest arrival time (at), while the limits imposed on a circuit
node for proper logic operations are quantified as earliest and latest
required arrival time (rat). The verification of timing at a circuit
node is determined by the largest difference or worst slack between
the required arrival time and signal arrival time. In this paper, we
focus on two primary types of timing verification – hold test and
setup test for a specified flip-flop (FF). Considering a hold test or
setup test 𝑡, the following equations are applied for STA [1].

𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦𝑡 = 𝑎𝑡𝑙𝑎𝑡𝑒𝑜 + 𝑇ℎ𝑜𝑙𝑑, 𝑟𝑎𝑡𝑙𝑎𝑡𝑒𝑡 = 𝑎𝑡𝑒𝑎𝑟𝑙𝑦𝑜 + 𝑇𝑐𝑙𝑘 − 𝑇𝑠𝑒𝑡𝑢𝑝 (1)

𝑠𝑙𝑎𝑐𝑘ℎ𝑜𝑙𝑑𝑤𝑜𝑟𝑠𝑡 = 𝑎𝑡𝑒𝑎𝑟𝑙𝑦𝑑 − 𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦𝑡 , 𝑠𝑙𝑎𝑐𝑘𝑠𝑒𝑡𝑢𝑝𝑤𝑜𝑟𝑠𝑡 = 𝑟𝑎𝑡𝑙𝑎𝑡𝑒𝑡 − 𝑎𝑡𝑙𝑎𝑡𝑒𝑑 (2)

Notice that 𝑇𝑐𝑙𝑘 is the clock period, 𝑇ℎ𝑜𝑙𝑑 and 𝑇𝑠𝑒𝑡𝑢𝑝 are values
of hold and setup constraints, and 𝑜 and 𝑑 are respectively the clock
pin and the data pin of the testing FF. In general, the best-case fast
condition is critical for hold test and the worst-case slow condition is
critical for setup test. For a data path feeding the testing FF, a positive
slack means the required arrival time is satisfied and a negative slack
means the required arrival time is in a violation.
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Figure 3. An example of sequential circuit network.

Consider a sample circuit in Figure 3, where two data paths feed a
common FF. Numbers enclosed within parentheses denote the earliest
and latest delay of a circuit node. Assuming all wire delays and arrival
times of primary inputs are zero, we perform the setup test on FF3.
The latest required arrival time of FF3 is obtained by subtracting the
values of clock period plus the earliest arrival time at the clock pin
of FF3 from the value of setup constraint, which is equal to (120 +
(20 + 10 + 10)) − 30 = 130. The respective latest arrival times of
data path 1 and data path 2 at the data pin of FF3 are 25 + 30 + 40
+ 50 = 145 and 25 + 45 + 40 + 50 = 160. Using equation (2), the
setup slacks of data path 1 and data path 2 are 130 − 145 = −15
(failing) and 130 − 160 = −30 (failing), respectively.

III. CLOCK NETWORK PESSIMISM REMOVAL

The dual-mode split-timing analysis has greatly enabled timers to
effectively account for any within-chip variation effects. However,
the dual-mode analysis inherently embeds unnecessary pessimism,
which results in an over-conservative design. Take the slack of data
path 1 in Figure 3 for example. The pessimism arises with buffer B1
since it was accounted for both earliest and latest delays at the same

time which is physically impossible. In general, the pessimism of two
circuit nodes appears in the common path from the clock source to the
the closest point to which the two nodes converge through upstream
traversal. Such point is also referred to as clock reconverging node.
The true timing without pessimism can be obtained by adding the
final slack to a credit which is defined as follows [1]:

𝑐𝑟𝑒𝑑𝑖𝑡ℎ𝑜𝑙𝑑𝑢,𝑣 = 𝑎𝑡𝑙𝑎𝑡𝑒𝑐𝑝 − 𝑎𝑡𝑒𝑎𝑟𝑙𝑦𝑐𝑝 (3)

𝑐𝑟𝑒𝑑𝑖𝑡𝑠𝑒𝑡𝑢𝑝𝑢,𝑣 = 𝑎𝑡𝑙𝑎𝑡𝑒𝑐𝑝 − 𝑎𝑡𝑒𝑎𝑟𝑙𝑦𝑐𝑝 − (𝑎𝑡𝑙𝑎𝑡𝑒𝑟 − 𝑎𝑡𝑒𝑎𝑟𝑙𝑦𝑟 ) (4)

Notice that 𝑟 is the clock source and cp is the clock reconverging
node of nodes 𝑢 and 𝑣. Since setup test compares the data point
against the clock point in the subsequent clock cycle, the credit
rules out the arrival time at the clock source [1]. The slack prior
to common-path-pessimism removal (CPPR) is referred to as pre-
CPPR slack or post-CPPR slack otherwise. For the same instance
in Figure 3, the credits of data path 1 and data path 2 for setup
test are respectively 5 and 40, which in turn tell their true slacks
being −15 + 5 = −10 (failing) and −30 + 40 = 10 (passing). A
key observation here is that the most critical pre-CPPR slack (data
path 2) is not necessarily reflective of the true critical path (data path
1). Analyzing the single-most critical path during CPPR is obviously
insufficient. In practice, reporting a number of ordered critical paths
for a given test rather than merely the single-most critical one is
relatively necessary and important.

IV. PROBLEM FORMULATION

The circuit network is input as a directed-acyclic graph (DAG)
𝐺 = {𝑉,𝐸}. 𝑉 is the node set with 𝑛 nodes which specify pins of
circuit elements (e.g., primary IO, logic gates, FFs, etc.). 𝐸 is the
edge set with 𝑚 edges which specify pin-to-pin connections. Each
primary input, i.e., the node with zero indegree, is assigned by an
earliest arrival time and a latest arrival time. Each edge 𝑒 or 𝑒𝑢→𝑣 is
directed from its tail node 𝑢 to head node 𝑣 and is associated with
a dual tuple of earliest delay delay𝑒𝑎𝑟𝑙𝑦𝑒 and latest delay delay𝑙𝑎𝑡𝑒𝑒 .
A path is an ordered sequence of nodes ⟨𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛⟩ or edges
⟨𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑛⟩ and the path delay is the sum of delays through all
edges. In this paper, we are in particular emphasizing on the data
path, which is defined as a path from the clock source pin of an
FF to the data pin of another FF. The arrival time of a data path
is the sum of its path delay and arrival time from where this data
path originates. The clock tree is a subgraph of 𝐺 which distributes
the clock signal with clock period 𝑇𝑐𝑙𝑘 from the tree root 𝑟 to all
the sequential elements that need it. A test is defined with respect
to an FF as either a hold check or setup check to verify the timing
relationship between the clock pin and the data pin of the FF, so
that the hold requirement 𝑇ℎ𝑜𝑙𝑑 or setup requirement 𝑇𝑠𝑒𝑡𝑢𝑝 is met.
We refer to the testing FF as destination FF and those FFs having
data paths feeding the destination FF as source FFs. Using the above
knowledge, the CNPR problem is formulated as follows:

Objective: Given a circuit network 𝐺 and a hold or setup test 𝑡 as
well as a positive integer 𝑘, the goal is to identify the top 𝑘 critical
paths (i.e., data paths that are failing for the test) from source FFs
to the destination FF in ascending order of post-CPPR slack.

V. ALGORITHM

The overall algorithm of UI-Timer is presented in Algorithm 1. It
consists of of two stages: lookup table preprocessing and pessimism-
free path search. The goal of the first stage is to tabulate the common
path information for quick lookup of credit, while the goal in the
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second stage is to identify the top-k critical paths in a pessimism-
free graph derived from a given test. We shall detail in this section
each stage in bottom-up fashion.

Algorithm 1: UI-Timer(t, k)
Input: test t, path count k
Output: solution set Ψ of the top-k critical paths

1 BuildCreditLookupTable();
2 𝐺𝑝 ← pessimism-free graph for the test t;
3 Ψ← GetCriticalPath(𝐺𝑝.source, 𝐺𝑝.destination, k);
4 return Ψ;

A. Lookup Table Preprocessing

In graph theory, the clock reconverging node of two nodes in the
clock tree is equivalent to the lowest common ancestor (LCA) of the
two nodes. The arrival time information of each node in the clock
tree can be precomputed and therefore the credit of two nodes can be
obtained immediately once their LCA is known. Many state-of-the-
art LCA algorithms have been invented over the last decades. The
table-lookup algorithm by [5] is employed as our LCA engine due
to its simplicity and efficiency. For a given clock tree, we build three
tables as follows:

∙ The Euler table 𝐸 records the identifiers of nodes in the Euler
tour of the clock tree; 𝐸[𝑖] is the identifier of 𝑖𝑡ℎ visited node.

∙ The level table 𝐿 records the levels of nodes visited in the Euler
tour; 𝐿[𝑖] is the level of node 𝐸[𝑖].

∙ The occurrence table 𝐻[𝑣] records the index of the first occur-
rence of node 𝑣 in array 𝐸.

As a result, the LCA of a node pair (𝑢, 𝑣) is the node situated
on the smallest level between the first occurrence of 𝑢 the and first
occurrence of 𝑣. We have the following lemma:

Lemma 1: Denoting the index of the node with the smallest level
between the index 𝑎 and 𝑏 in the level table 𝐿 as MinL(𝑎, 𝑏), the
LCA of a given node pair (𝑢, 𝑣) is 𝐸[MinL(𝐻[𝑢], 𝐻[𝑣])].

r

v1

FF1

(20, 25)

(10, 30)

v2

(10, 45)

FF2

(0, 0)

FF3

(10, 30)

r v1 FF1 v1 v2 FF2 v2 FF3 v2 v1 r

0 1 2 1 2 3 2 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

r v1 FF1 v2 FF2 FF3
0 1 2 4 5 7

E:

L:

H:H[FF1] = 2
H[FF3] = 7

LCA(FF1, FF3) = E[3] = v1

MinL(2, 7) = 3

Clock tree

Figure 4. Derived tabular fields from the clock tree in Figure 3.

Take the LCA of FF1 and FF3 in Figure 4 for example. The
occurrence indices of FF1 and FF3 in Euler tour are 2 and 7,
respectively. Referring to the indices between 2 and 7 in the level
table, the node with the lowest level is situated in the third position
of the Euler table. Hence, the LCA of FF1 and FF3 is 𝑣1. It is
obvious the operations taken on occurrence table and Euler table can
be done in constant time. Finding the position of an element with the
minimum value between two specified indices in level table (i.e., the
value returned by function MinL(𝑎, 𝑏) for a given index pair 𝑎 and
𝑏) is the major task. We adopt the sparse-table solution whereby a
two-dimensional (2D) table 𝑀 [𝑖][𝑗] is used to store the index of the

minimum value in the level table starting at 𝑖 having length 2𝑗 [5].
This concept is visualized in Figure 5.

0 1 2 1 2 3 2 3 2 1 0
0 1 2 3 4 5 6 7 8 9 10

L:

M[1][1] = 1 M[6][2] = 9

MinL(1, 2) = 1 MinL(6, 9) = 9

Figure 5. Range minimum query to the level table from Figure 4.

Figure 5 indicates that the optimal substructure of 𝑀 [𝑖][𝑗] is the
minimum value between the first and second halves of the interval
with 2𝑗−1 length each. Hence, the table 𝑀 can be fulfilled using
dynamic programming with the following recurrence:

𝑀 [𝑖][𝑗] =

⎧⎨⎩
𝑖, base case 𝑗 = 0

𝑀 [𝑖][𝑗 − 1], if 𝐿[𝑀 [𝑖][𝑗 − 1]] ≤ 𝐿[𝑀 [𝑖+ 2𝑗−1][𝑗 − 1]]

𝑀 [𝑖+ 2𝑗−1][𝑗 − 1], otherwise

Provided the table 𝑀 has been processed, the value of MinL(𝑎,
𝑏) can be computed by selecting two blocks that entirely cover the
interval between 𝑎 and 𝑏 and returning the minimum between them.
Let 𝑐 be ⌊log(𝑏 − 𝑎 + 1)⌋ and assume 𝑏 > 𝑎, the following formula
is used for computing the value of MinL(𝑎, 𝑏):

𝑀𝑖𝑛𝐿(𝑎, 𝑏) =

{
𝑀 [𝑎][𝑐], if 𝐿[𝑀 [𝑎][𝑐]] ≤ 𝐿[𝑀 [𝑏− 2𝑐 + 1][𝑐]]

𝑀 [𝑏− 2𝑐 + 1][𝑐], otherwise

The procedure of building tables 𝐸, 𝐿, 𝐻 , and 𝑀 is presented
in Algorithm 2. Tables 𝐸, 𝐿, and 𝐻 can be built using depth-first
search starting at the root of the clock tree (line 1), while table 𝑀
is fulfilled via bottom-up dynamic programming (line 2:16). Using
these tables as infrastructure, the credit of two given nodes in the
clock tree can be retrieved in constant time by Algorithm 3. The
LCA of the two given nodes is found first (line 1:12). Then for the
hold test, the credit is returned as the difference between the latest
arrival time and the earliest arrival time at the LCA (line 14:15). For
the setup test which performs timing check in the subsequent clock
cycle, the credit excludes the arrival time at the clock source (line
16:18). We conclude the lookup table preprocessing by theorem 1.

Algorithm 2: BuildCreditLookupTable(G)
Input: circuit network 𝐺

1 Build tables 𝐸,𝐿,𝐻 via Euler tour starting at the root 𝑟 of clock tree;
2 size1 ← 𝐿.size;
3 size2 ← ⌊log(𝐿.size)⌋;
4 Create a 2D table 𝑀 with size size1× (size2 + 1);
5 for 𝑖← 0 to size1 − 1 do
6 𝑀 [𝑖][0]← 𝑖;
7 end
8 for 𝑗 ← 1 to size2 − 1 do
9 for 𝑖← 0 to size1 − 2𝑗 do

10 if 𝐿[𝑀 [𝑖][𝑗 − 1]] < 𝐿[𝑀 [𝑖+ 2𝑗−1][𝑗 − 1]] then
11 𝑀 [𝑖][𝑗]←𝑀 [𝑖][𝑗 − 1];
12 else
13 𝑀 [𝑖][𝑗]←𝑀 [𝑖+ 2𝑗−1][𝑗 − 1];
14 end
15 end
16 end

Theorem 1: UI-Timer builds lookup tables E, L, H, and M in
O(nlogn) space and O(nlogn + m) time. Using these lookup tables,
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Algorithm 3: GetCredit(𝑢, 𝑣)
Input: nodes 𝑢 and 𝑣

1 if u or v is not a node of the clock tree then
2 return 0;
3 end
4 if 𝐻[𝑢] > 𝐻[𝑣] then
5 swap(u, v)
6 end
7 𝑐← ⌊log(𝐻[𝑢]−𝐻[𝑣] + 1)⌋ ;
8 if L[M[H[u]][c]] < L[M[H[v]− 2𝑐 + 1][c]] then
9 lca ← 𝐸[𝑀 [𝐻[𝑢]][𝑐]];

10 else
11 lca ← 𝐸[𝑀 [𝐻[𝑣]− 2𝑐 + 1][𝑐]];
12 end
13 if hold test then
14 return at𝑙𝑎𝑡𝑒𝑙𝑐𝑎 − at𝑒𝑎𝑟𝑙𝑦𝑙𝑐𝑎 ;
15 else
16 𝑟 ← root of the clock tree;
17 return at𝑙𝑎𝑡𝑒𝑙𝑐𝑎 − at𝑒𝑎𝑟𝑙𝑦𝑙𝑐𝑎 − (at𝑙𝑎𝑡𝑒𝑟 − at𝑒𝑎𝑟𝑙𝑦𝑟 );
18 end

the credit of two given nodes in the clock tree can be retrieved in
O(1) time.

B. Formulation of Pessimism-Free Graph

In the course of hold or setup check, the required arrival time
of the destination FF and the amount of pessimism between each
source FF and the destination FF remain fixed regardless of which
data path is being considered. Precisely speaking, the way data paths
passing through plays the most vital role in determining the final
slack values. In order to facilitate the path search without interleaving
between slack computation and pessimism retrieval, we construct a
pessimism-free graph 𝐺𝑝 = {𝑉𝑝, 𝐸𝑝} for a given test 𝑡 as follows:

Rule #1: We designate the data pin 𝑑 of the destination FF the
destination node and artificially create a source node 𝑠 and connect
it to the clock pin 𝑖 of each source FF. Denoting the set of artificial
edges as 𝐸𝑠, we have 𝑉𝑝 = 𝑉

∪{𝑠} and 𝐸𝑝 = 𝐸
∪

𝐸𝑠.

Rule #2: We associate 1) offset weight with each artificial edge and
2) delay weight with each ordinary circuit connection as follows:

∙ ∀𝑒𝑠→𝑖 ∈ 𝐸𝑠, 𝑤ℎ𝑜𝑙𝑑
𝑒𝑠→𝑖

= creditℎ𝑜𝑙𝑑𝑖,𝑑 − rat𝑒𝑎𝑟𝑙𝑦𝑡 + at𝑒𝑎𝑟𝑙𝑦𝑖 .

∙ ∀𝑒𝑠→𝑖 ∈ 𝐸𝑠, 𝑤𝑠𝑒𝑡𝑢𝑝
𝑒𝑠→𝑖

= credit𝑠𝑒𝑡𝑢𝑝𝑖,𝑑 + rat𝑙𝑎𝑡𝑒𝑡 − at𝑙𝑎𝑡𝑒𝑖 .

∙ ∀𝑒 ∈ 𝐸, 𝑤ℎ𝑜𝑙𝑑
𝑒 = delay𝑒𝑎𝑟𝑙𝑦𝑒 .

∙ ∀𝑒 ∈ 𝐸, 𝑤𝑠𝑒𝑡𝑢𝑝
𝑒 = −delay𝑙𝑎𝑡𝑒𝑒 .

An example of pessimism-free graph is shown in Figure 6. The
intuition is to separate out the constant portion of the post-CPPR slack
by an artificial edge such that the search procedure can focus on the
rest portion which is totally depending on the way data paths passing
through. It is clear that the cost of any source-destination path (i.e.,
sum of all edge weights) in the pessimism-free graph is equivalent
to post-CPPR slack of the corresponding data path which is obtained
by removing the artificial edge. This crucial fact is highlighted in the
following theorem:

Theorem 2: The cost of each source-destination path in the
pessimism-free graph 𝐺𝑝 is equal to the post-CPPR slack of the
corresponding data path.

On the basis of theorem 2, the problem of identifying the top-
k critical paths for a given test is similar to the path ranking
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Figure 6. Derivation of pessimism-free graph from a given test.

problem applied to the pessimism-free graph. A number of state-of-
the-art algorithms for path ranking have been proposed over the past
years [3], [8], [11], [13]. The best time complexity acquired to date
is 𝑂(𝑚+ 𝑛𝑙𝑜𝑔𝑛+ 𝑘) from the well-know Eppstein’s algorithm [8].
However, it relies on sophisticated implementation of heap tree
which results in little practical interests. Moreover, most existing
approaches are developed for general graphs and lack a compact and
efficient specialization to certain graphs such as the directed-acyclic
circuit network. We shall discuss in the following sections the key
contribution of UI-Timer in resolving these deficiencies.

C. Implicit Representation of Data Path

Although explicit path representation is the major pursuit of ex-
isting approaches, the inherent restriction makes it difficult to devise
efficient algorithms with satisfactory space and time complexities [9],
[12]. UI-Timer performs implicit path representation instead, yielding
significant improvements on memory usage and runtime performance.
While the spirit is similar to [8], our algorithm differs in exploring a
more compact and efficient way to implicit path search and explicit
path recovery. We introduce the following definitions:

Definition 1 – Suffix Tree: Given a pessimism-free graph, the suf-
fix tree refers to the successor order obtained from the shortest path
tree 𝑇𝑑 rooted at the destination node.

Definition 2 – Prefix Tree: The prefix tree is a tree order of non-
suffix-tree edges such that each node implicitly represents a path with
prefix from its parent path deviated on the corresponding edge and
suffix followed from the suffix tree. The root which is artificially
associated with a null edge refers to the shortest path in 𝑇𝑑. Table I
lists the data field to which we apply for each node.

TABLE I
DATA FIELD OF A PREFIX TREE NODE

Member Definition

p pointer to the parent node
e deviation edge
w cumulative deviation cost
c credit for pessimism removal

Constructor PrefixNode(p, e, w, c)

An example is illustrated in Figure 7. The suffix tree is depicted
with bold edges and numbers on nodes denote the shortest distance
to the destination node. Dashed edges denote artificial connections
from the source node. The shortest path is ⟨𝑒3, 𝑒8, 𝑒12, 𝑒15⟩ which is
implicitly represented by the root of prefix tree. The prefix tree node
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marked by “𝑒11” implicitly represents the path with prefix ⟨𝑒3, 𝑒8⟩
from its parent path deviated on “𝑒11” and suffix ⟨𝑒14⟩ following from
the suffix tree. As a result, explicit path recovery can be realized in
a recursive manner as presented in Algorithm 4.
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Figure 7. Implicit path representation using suffix tree and prefix tree.

Algorithm 4: RecoverDataPath(pfx, end)
Input: prefix-tree node pointer pfx, node end

1 beg ← head[pfx.e];
2 if pfx.p ∕= NIL then
3 RecoverDataPath(pfx.p, tail[pfx.e]);
4 end
5 while beg ∕= end do
6 Record the path trace through pin “beg”;
7 beg ← successor[beg]
8 end
9 Record the path trace through pin “end”;

Algorithm 5: Slack(pfx, s, r)
Input: prefix-tree node pointer pfx, source node s, CPPR flag r
Output: post-CPPR slack for true flag r or pre-CPPR slack otherwise

1 if r = true then
2 return pfx.w + dis[s];
3 end
4 return pfx.w + dis[s] - pfx.c;

In order to retrieve the path cost, we keep track of the deviation
cost of each edge 𝑒, which is defined as follows [8]:

𝑑𝑣𝑖[𝑒] = 𝑑𝑖𝑠[ℎ𝑒𝑎𝑑[𝑒]]− 𝑑𝑖𝑠[𝑡𝑎𝑖𝑙[𝑒]] + 𝑤𝑒𝑖𝑔ℎ𝑡[𝑒] (5)

Notice that dis[𝑣] denotes the shortest distance from node 𝑣 to the
destination node. Intuitively, deviation cost is a non-negative quantity
that measures the distance loss by being deviated from 𝑒 instead of
taking the ordinary shortest path to destination. Therefore for each
node in the prefix tree, the corresponding path cost (i.e., post-CPPR
slack) is equal to the summation of its cumulative deviation cost and
the cost of shortest path in 𝑇𝑑. Algorithm 5 realizes this process.
We conclude the conceptual construction so far by the following two
important lemmas.

Lemma 2: UI-Timer deals with the implicit representation of each
data path in O(1) space and time complexities.

Lemma 3: The cumulative deviation cost of each node in the prefix
tree is greater than or equal to that of its parent node.

Above lemmas are two obvious byproducts of our prefix tree
definition. Lemma 1 tells that UI-Timer stores each data path in
constant space and records or queries important information such
as credit and slack in constant time. While lemma 2 is true due to

the monotonicity, we shall demonstrate in the next section its strength
and simplicity in pruning the search space.

D. Generation of Top-k Critical Paths

We begin by presenting a key subroutine of our path generating
procedure – Spur, which is described in Algorithm 6. In a rough
view, Spur describes the way UI-Timer expands its search space for
discovering critical paths. After a path 𝑝𝑖 is selected as the i-th critical
path, each node along the path 𝑝𝑖 is viewed as a deviation node to
spur a new set of path candidates (line 2:14). Any duplicate path
should be ruled out from the candidate set (line 1 and line 5:7) and
each newly spurred path is parented to the path 𝑝𝑖 in the prefix tree
(line 8). Having a path candidate with non-negative post-CPPR slack,
the following search space can be pruned and is exempted from the
queuing operation (line 9:11). This simple yet effective prune strategy
is a natural result of lemma 2 due to the monotonic growth of path
cost along with our search expansion.

Algorithm 6: Spur(pfx, s, d, Q)
Input: prefix-tree node pointer pfx, source node s, destination node d,

priority queue Q

1 u ← head[pfx.e];
2 while u ∕= d do
3 for e ∈ fanout(u) do
4 v ← head[e];
5 if v = successor[u] or v is unreachable then
6 continue;
7 end
8 pfx new ← new PrefixNode(pfx, e, pfx.w + dvi[e], pfx.c);
9 if Slack(pfx new, s, true) < 0 then

10 Q.enque(pfx new);
11 end
12 end
13 u ← successor[u];
14 end

Lemma 4: The procedure Spur is compact, meaning every path
candidate is generated uniquely.

Proof: Suppose there is at least a pair of duplicate path candi-
dates 𝑝1 and 𝑝2, which are implicitly represented by 𝜉1 and 𝜉2 the
sets of deviation edges. Since 𝑝1 and 𝑝2 are identical, 𝜉1 and 𝜉2
must be identical as well. If both 𝜉1 and 𝜉2 contain only one edge,
the respective prefix tree nodes must be parented to the same node,
which is invalid due to the filtering statement in line 5:7. If both
𝜉1 and 𝜉2 contain multiple edges, there exists at least two distinct
permutations in the prefix tree that represent the same path. However,
this will results in a cyclic connection of edges which violates the
graph property of the circuit network. Therefore by contradiction the
procedure Spur is compact.

Lemma 5: The procedure Spur takes O(n + mlogk) time complexity.

Proof: The entire procedure takes up to 𝑛 phases on scanning a
given path and spurs at most 𝑚 new path candidates. We maintain
only the top-k critical candidates ever seen such that the maximum
number of items in the priority queue at any time will not exceed
𝑘. This can be achieved in O(mlogk) time using a min-max priority
queue [4]. Therefore the total complexity is O(n + mlogk).

Using Algorithms 4–6 as primitive, the top-k critical paths can be
identified using Algorithm 7. Prior to the search, we construct the
suffix tree by finding the shortest path tree rooted at the destination
node 𝑑 in the pessimism-free graph (line 1). Then each of the most
critical paths from source FFs to the destination FF is viewed as an
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Figure 8. Exemplification of UI-Timer. (a) UI-Timer builds a suffix tree in the initial iteration by finding the shortest path tree rooted at the target node. (b)
During the first search iteration, four paths are spurred from the most critical path ⟨𝑒3, 𝑒8, 𝑒12, 𝑒15⟩. (c) During the second search iteration, one path is spurred
from the second critical path ⟨𝑒2, 𝑒6, 𝑒14⟩. (d) During the third search iteration, one path is spurred from the third critical path ⟨𝑒2, 𝑒7, 𝑒12, 𝑒15⟩. (e) No path
is generated from the forth and fifth search iterations. (f) During the sixth search iteration, one path is spurred from the sixth critical path ⟨𝑒4, 𝑒10, 𝑒13, 𝑒15⟩.

Algorithm 7: GetCriticalPath(s, d, k)
Input: source node s, destination node d, path count k
Output: solution set Ψ of critical paths

1 Build the suffix tree by finding the shortest path tree rooted at d;
2 Initialize a priority queue Q keyed on cumulative deviation cost;
3 Ψ← 𝜙 ;
4 num path ← 0;
5 for e ∈ fanout(s) do
6 credit ← GetCredit(head[e], d);
7 pfx ← new PrefixNode(NIL, e, dvi[e], credit);
8 if Slack(pfx, s, true) is failing then
9 Q.enque(pfx);

10 end
11 end
12 while Q is not empty do
13 pfx new ← Q.deque();
14 num path ← num path + 1;
15 Ψ← Ψ

∪
RecoverDataPath(pfx, d);

16 if num path ≥ k then
17 break;
18 end
19 Spur(pfx, s, d, Q);
20 end
21 return Ψ;

initial path candidate (line 5:11). The major search loop (line 12:20)
iteratively looks for a path with lowest cumulative deviation cost from
the path candidate set and performs spurring operation on it. Iteration
ends when we have extracted k paths (line 16:18) or no more steps
can be proceeded. Finally, we draw the following two theorems.

Theorem 3: UI-Timer is complete, meaning that it can exactly
identify the top-k critical paths for each hold test or setup test without
clock network pessimism.

Proof: Proving the completeness of UI-Timer is equivalent to
showing that the major search framework of UI-Timer is exactly
identical to a typical graph search problem [13]. The search space or
search tree of UI-Timer grows equivalently with the prefix tree, in
which each state represents a path implicitly. Spur is responsible for
neighboring expansion, iteratively including a set of new deviation
edges as tree leaves or search frontiers. Since by definition all paths
can be viewed as being deviated from the shortest path, the initial
state is equivalent to the root of the prefix tree. Using a priority queue,
the items or paths extracted are in the order of criticality.

Theorem 4: UI-Timer solves each hold test or setup test in space
complexity O(nlogn + m + k) and time complexity O(nlogn + kn +
kmlogk).

Proof: The space complexity of UI-Timer involves O(n + m) for
storing the circuit graph, O(nlogn) for lookup table, and O(n) for the
suffix tree as well as O(k) for the prefix tree. As a result, the total
space requirement is O(nlogn + n + k). On the other hand, it takes
up to k iterations on calling the procedure Spur in order to discover
the top-k critical paths. Recalling that the lookup table is built in
time O(nlogn) and the suffix tree can be constructed in time O(n +
m) using topological relaxation, the time complexity of UI-Timer is
thus O(nlogn + kn + kmlogk).

An exemplification is given in Figure 8. (a) illustrates a suffix
tree derived by computing the shortest path tree rooted at the
destination node from a given pessimism-free graph. (b) shows a
total of four paths are spurred from the current-most critical path
𝑝1 = ⟨𝑒3, 𝑒8, 𝑒12, 𝑒15⟩ in the first search iteration. For instance,
the path with deviation edge 𝑒11 has cumulative cost equal to 0
+ (6 − 5 + 3) = 4. The corresponding explicit path recovery is
⟨𝑒3, 𝑒8, 𝑒11, 𝑒14⟩ as a result of combining the prefix of 𝑝1 ending
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at the tail of 𝑒11 and the suffix from the suffix tree beginning at
the head of 𝑒11. On the other hand, the path with deviation edge
𝑒1 has deviation cost equal to 0 + (7 − (−12) + 0) = 19 which
in turns tells the value of its post-CPPR slack being −12 + 19 =
7. Since the post-CPPR slack has been positive already, by lemma
3 the following search space can be pruned (node marked with a
slash “/”). Accordingly in the end of this iteration, only three of the
four spurred paths are explored as search frontiers from the parent
path 𝑝1. (c)–(f) repeat the same procedure except no more paths are
spurred from the fourth and fifth search iterations.

E. Parallel Implementation for Multiple Tests

The generic framework of UI-Timer is developed on the basis
of one test at one time. In other words, each test is treated as an
independent input without dependency on the others. For applications
where multiple tests are designated, a readily available parallel
extension can be carried out by evoking multiple threads with each
operating on one test. With the shared lookup table and the circuit
graph, we impose the least memory requirement by maintaining only
private information about the suffix tree and the prefix tree for each
thread. A number of tests with up to the maximum number of threads
supported by the machine can be simultaneously processed. The
multi-threaded implementation is presented in Algorithm 8.

Algorithm 8: UI-TimerParallel(𝑡̂, k)

Input: test vector 𝑡̂, path count k
Output: solution vector Ψ̂ of the top-k critical paths for each test

1 BuildCreditLookupTable();
2 Parallel for index i in range(𝑡̂) do
3 𝐺𝑖

𝑝 ← pessimism-free graph for the test 𝑡̂[𝑖];
4 Ψ̂[𝑖]← GetCriticalPath(𝐺𝑖

𝑝.source, 𝐺𝑖
𝑝.destination, k);

5 end
6 return Ψ̂;

VI. EXPERIMENTAL RESULT

UI-Timer is implemented in C++ language on a 2.67GHz 64-bit
Linux machine with 8GB memory. The application programming
interface (API) provided by OpenMP 3.1 is used for our multi-thread
parallelization [2]. Our machine can execute a maximum of four
threads concurrently. Experiments are undertaken on a set of circuit
benchmarks released from TAU 2014 CAD contests [10]. Figure 9
illustrates the impact of CNPR on hold and setup test slacks for
circuits des perf and vga lcd. As contest rules, we run for each
circuit benchmark the timer setting the path count 𝑘 from 1 to 20
on all setup and hold tests and collect averaged quantities such as
runtime and accuracy for comparison. The accuracy is measured by
the error rate of mismatched paths to a golden reference offered by an
industrial timer [1], [10]. Table II lists the benchmark statistics and
overall performance of UI-Timer comparing with top-ranked timers,
“LightSpeed” and “iTimerC,” from TAU 2014 CAD contest [1]. For
fair comparison, all timers are run with four threads.

We begin by comparing UI-Timer with LightSpeed. The strength
of UI-Timer is clearly demonstrated in the accuracy value. Our
timer achieves exact accuracy yet LightSpeed suffers from many
path mismatches. The highest error rate is observed in the smallest
design s27. Unfortunately, we are unable to report experimental data
of ac97 ctrl, Combo5, Combo6, and Combo7, because LightSpeed
encounters execution faults. Although LightSpeed is faster in some
cases, the performance margin of LighSpeed reaches up to ×141
worse than UI-Timer in circuit tv80 (i.e., 32.38 vs 0.23) while the

Figure 9. Impact of CNPR on test slacks for circuits des perf and vga lcd.

counterpart of UI-Timer is more comparable by at most ×9 slower
in vga lcd (i.e., 16.78 vs 159.15). In this concern, the solution
quality of UI-Timer is more stable and reliable, especially for high-
frequency designs where accuracy is the major concern of timing-
specific optimizations. Next we compare UI-Timer with iTimerC.
In general, UI-Timer outperforms iTimerC across nearly all circuit
benchmarks in terms of runtime. Although iTimerC acquires better
accuracy than LightSpeed, its runtime performance is not remarkable
especially in larger designs such as Combo5, Combo6 and Combo7.
The largest difference is observed in circuit tv80 where UI-Timer
reaches the goal by ×101 faster than iTimerC (i.e., 23.13 vs 0.23).
Similar trend can be also found in other cases.
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Figure 10. Performance characterization of UI-Timer, LightSpeed, and
iTimerC for circuits tv80 and systemcaes.

Finally we investigate the scalability of UI-Timer by varying the
input parameter of the path count from 1 to 1000. The performance
comparing UI-Timer with LightSpeed and iTimerC on two example
circuits, tv80 and systemcaes, is characterized in Figure 10. We
see all runs are accomplished instantaneously by UI-Timer and the
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TABLE II
PERFORMANCE COMPARISON BETWEEN UI-TIMER AND TOP-RANKED TIMERS LIGHTSPEED AND ITIMERC FROM TAU 2014 CAD CONTEST [1].

Circuit ∣𝑉 ∣ ∣𝐸∣ ∣𝐶∣ ∣𝐼∣ ∣𝑂∣ # Tests # Paths
LightSpeed iTimerC UI-Timer

AER MER CPU AER CPU AER CPU

s27 109 112 6 6 1 6 9 9.97 50.00 0.20 0 0.40 0 0.20
s344 574 658 16 11 11 30 71 0 0 0.22 0 0.53 0 0.22
s349 598 682 16 11 11 30 71 0 0 0.25 0 0.53 0 0.22
s386 570 701 7 9 7 12 27 0 0 0.20 0 0.49 0 0.20
s400 708 813 22 5 6 42 77 0 0 0.23 0 0.56 0 0.21
s510 891 1091 7 21 7 12 99 0 0 0.18 0 0.40 0 0.18
s526 933 1097 22 5 6 42 44 0 0 0.25 0 0.56 0 0.22

s1196 1928 2400 19 16 14 36 478 0 0 0.25 0 0.59 0 0.22
s1494 2334 2961 7 10 19 12 105 0 0 0.25 0 0.58 0 0.21

systemcdes 10826 13327 1967 132 65 380 41436 6.79 32.89 2.27 0 3.62 0 0.14
wb dma 14647 17428 5218 217 215 1374 158 7.46 39.30 0.23 0 0.90 0 0.28

tv80 18080 23710 3608 14 32 838 19227963 8.20 43.49 32.38 0 23.13 0 0.23
systemcaes 23909 29673 6643 260 129 2500 13069928 6.53 29.92 33.23 0 22.44 0 0.62
mem ctrl 36493 45090 10638 115 152 3754 62938 5.41 24.73 0.65 0 3.71 0 0.83
ac97 ctrl 49276 55712 22223 84 48 9370 148 - - - 0 2.95 0 1.31
usb funct 53745 66183 17665 128 121 4392 129854 6.43 37.87 0.94 0 5.64 0 1.41

pci bridge32 70051 78282 33474 162 207 16450 17296 5.04 25.49 2.27 0 14.49 0 4.71
aes core 68327 86758 5289 260 129 2528 21064 6.72 31.70 0.68 0 4.46 0 0.96
des perf 330538 404257 88751 235 64 19764 1682 4.60 11.89 3.37 0 18.37 0 19.24
vga lcd 449651 525615 172065 89 109 50182 5281 7.94 43.21 16.78 0 119.24 0 159.15

Combo2 260636 284091 171529 170 218 29574 62938 4.70 24.07 9.19 0 49.00 0 56.12
Combo3 181831 284091 73784 353 215 8294 129854 6.71 35.14 3.39 0 20.30 0 11.35
Combo4 778638 866099 469516 260 169 53520 19227963 7.93 42.13 205.69 0 557.81 0 333.04
Combo5 2051804 2228611 1456195 432 164 79050 19227963 - - - N/A > 3 hrs 0 1225.50
Combo6 3577926 3843033 2659426 486 174 128266 19227963 - - - N/A > 3 hrs 0 3544.04
Combo7 2817561 3011233 2136913 459 148 109568 19227963 - - - N/A > 3 hrs 0 2485.81

∣𝑉 ∣: size of node set. ∣𝐸∣: size of edge set. ∣𝐶∣: size of clock tree. ∣𝐼∣: # of primary inputs. ∣𝑂∣: # of primary outputs. # Tests: # of setup tests and hold tests.
# Paths: max # of data paths per test. AER/MER: avg/max error rate of mismatched paths (%). CPU: avg program runtime (seconds). -: unexpected program fault.

runtime gap to the other timers becomes clear as path count grows.
With regard to accuracy, our timer is always exact and confers a
fundamental difference to LightSpeed which sacrifices accuracy for
unpronounced speedup. To sum up in precise, these results have
justified the practical viability of UI-Timer.

VII. CONCLUSION

In this paper we have presented UI-Timer, an exact and ultra-
fast algorithm for handling the CNPR problem during static timing
analysis. Unlike existing approaches which frequently use exhaustive
path search with case-by-case heuristics, our timer maps the CNPR
problem to a graph-theoretic formulation and applies an efficient
search routine using a highly compact and efficient data structure
to obtain an exact solution. UI-Timer has several merits such as
simplicity, coding ease, and most importantly the theoretically-proven
completeness and optimality. These advantages confer UI-Timer a
high degree of differential over existing methods. Comparatively,
experimental results have demonstrated the superior performance of
UI-Timer in terms of accuracy and runtime over top-ranked timers
from TAU 2014 CAD contest.
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