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Abstract—The recent TAU computer-aided design (CAD) con-
test has aimed to seek novel ideas for accurate and fast common
path pessimism removal (CPPR). Unnecessary pessimism forces
the static timing analysis tool to report worse violation than
the true timing properties owned by physical circuits, thereby
misleading signoff timing into a lower clock frequency at
which circuits can operate than actual silicon implementations.
Therefore, we introduce in this paper UI-Timer 1.0, a power-
ful CPPR algorithm which achieves high accuracy and ultrafast
runtime. Unlike existing approaches which are dominated by
explicit path search, UI-Timer 1.0 proves that by implicit path
representation the amount of search effort can be significantly
reduced. Our timer is superior in both space and time saving,
from which memory storage and important timing quantities are
available in constant space and constant time per path during the
search. Experimental results on industrial benchmarks released
from TAU 2014 CAD contest have justified that UI-Timer 1.0
achieved the best result in terms of accuracy and runtime over
existing CPPR algorithms.

Index Terms—Common path pessimism removal (CPPR), static
timing analysis (STA).

I. INTRODUCTION

HE LACK of accurate and fast algorithms for com-

mon path pessimism removal (CPPR) has been recently
pointed out as a major weakness of existing static timing
analysis (STA) tools [3]. Conventional STA tools rely on
conservative dual-mode operations to estimate early-late and
late-early path slacks [4]. This mechanism, however, imposes
unnecessary pessimism due to the consideration of delay vari-
ation along common segments of clock paths, as illustrated in
Fig. 1. This is because signal cannot simultaneously experi-
ence early-mode and late-mode operations along the physically
common segment of the data path and clock path in the clock
network. Unnecessary pessimism may lead to timing tests
(e.g., setup check, hold check, etc.) being marked as failing
whereas in reality they should be passing. Thus designers and
optimization tools might be misled into an over-pessimistic
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Fig. 1. Common path pessimism incurs in the common path between the
launching clock path and the capturing clock path.

timing report. Therefore, the goal of this paper is to iden-
tify and eliminate unwanted pessimism during STA so as to
prevent true timing properties of circuits from being skewed.

The importance and impact of CPPR are demonstrated
in Fig. 2. It is observed that the number of failing tests
was reduced from 642 to less than half after the pessimism
was removed. Unwanted pessimism might force designers
and optimization tools to waste a significant yet unneces-
sary amount of efforts on fixing paths that meet the intended
clock frequency. Such a problem becomes even critical when
design comes to deep submicrometer era where data paths
are shorter, clocks are faster, and clock networks are longer
to accommodate larger and complex chips. Moreover, without
pessimism removal designers and CAD tools are no longer
guaranteed to support legal turnaround for timing-specific
improvements, which dramatically degrades the productivity.
At worst, signoff timing analyzer gives rise to the issue of
“leaving performance on the table” and concludes a lower
frequency at which the circuits can operate than their actual
silicon implementations [5].

State-of-the-art CPPR algorithms are dominated by straight-
forward path-based methodology [7]-[9]. Critical paths are
identified without considering the pessimism first. Then for
each path the common segment is found by a simple walk
through the corresponding launching clock path and captur-
ing clock path. Finally, slack of each path is adjusted by the
amount of pessimism on the common segment. The real chal-
lenge is the amount of pessimism that needs to be removed
is path-specific. The most critical path prior to pessimism
removal is not necessarily reflective of the true counterpart
(see the line plot in Fig. 2), revealing a potential drawback
that path-based methodology has the worst-case performance
of exhaustive search space in peeling out the true critical
paths. Accordingly, prior works are usually too slow to handle

0278-0070 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


mailto:twh760812@gmail.com
mailto:mdfwong@illinois.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

HUANG AND WONG: UI-TIMER 1.0: AN ULTRAFAST PATH-BASED TIMING ANALYSIS ALGORITHM FOR CPPR

Slack Difference with/without Clock Network Pessimism Removal
80 T

T T T T T T T T
—x— data point
=z 60 slack ratio 1.0
e
< 40
8
»n 20f
E
o s
§
i -20 B
5 -of .
£
§ 60 Removal on: 303 negative points
o 80k Removal off: 642 negative points
_1 00 L L L L L L L L L
-100  -90 -80 -70 -60 -50 -40 -30 -20 -10 0
Pessimism-Oblivious Slack (ps)
Fig. 2. Impact on common path pessimism from a circuit in [6].

complex designs and unable to always identify the true critical
path accurately [6].

In this paper we introduce UI-Timer 1.0, a powerful CPPR
algorithm which achieves high accuracy, ultrafast runtime, and
low memory requirement. Our contributions are summarized
as follows.

1) We introduce a theoretical framework that maps the
CPPR problem to a graph search formulation. The
mapping allows the true critical path to be directly
identified through our search space, rather than the
time-consuming yet commonly-applied strategy which
interleaves the search between slack computation and
pessimism retrieval.

2) Unlike predominant explicit path search, we represent
the path implicitly using two efficient and compact data
structures, namely suffix tree and prefix tree, and yield a
significant saving in both search space and search time.

3) The effectiveness and efficiency of our timer have been
verified by TAU 2014 CAD contest [6]. Comparatively,
Ul-Timer 1.0 confers promising results over existing
timers in terms of accuracy and runtime. The source
code of our timer has been released to the pub-
lic domain [10], which can be an indicator assisting
researchers in discovering and optimizing the perfor-
mance bottleneck of their tools.

The rest of the paper is organized as follows. In
Sections II and III, we discuss the preliminary and background
of STA and CPPR. Prior works are briefed in Section IV.
In Section V, we formally formulate the problem of CPPR
and define terminologies. In Section VI, we present the algo-
rithm of UI-Timer 1.0, followed by practical applications and
technical details in Sections VII and VIII. The experimental
results are demonstrated in Section IX. Finally, we draw the
conclusion and future works in Section X.

II. STATIC TIMING ANALYSIS

STA is a method of verifying expected timing characteristics
of a circuit. The dual-mode or early-late timing model is the
most popular convention because it provides both lowerbound
and upperbound quantities to accounts for various on-chip
variations such as process parameter, e.g., transistor width,
voltage drops, and temperature fluctuations [4]. In contrast to
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Fig. 3. Example of sequential circuit network.

statistical STA where process variations are modeled as ran-
dom variables, the early-late timing model has deterministic
behaviors and thus enables lower computational complexity
for timing propagation. The earliest and latest timing instants
that a signal reaches are quantified as earliest and latest arrival
time (at), while the limits imposed on a circuit node for proper
logic operations are quantified as earliest and latest required
arrival time (rat). The verification of timing at a circuit node
is determined by the largest difference or worst slack between
the required arrival time and signal arrival time. In this paper,
we focus on two primary types of timing verification—hold
test and setup test for a specified data point at a flip-flop (FF).
The hold test and setup test are two safe timing guard that con-
strain the earliest required arrival time and the latest required
arrival time for a data point, respectively. Considering a timing
test ¢, the following equations are applied for STA [6]:

I‘atfarly = atl)atc + Thold, I‘atialte = at(e,arly + Teik — Tsetup
(1

slackold — atzarly - rat?aﬂy . slack{oP — paglate atlte,
2

Notice that Tk is the clock period, Tholq and Tsetp are val-
ues of hold and setup constraints, and o and d are, respectively,
the clock pin and the data pin of the testing FF. In general,
the best-case fast condition is critical for hold test and the
worst-case slow condition is critical for setup test. For a data
path feeding the testing FF, a positive slack means the required
arrival time is satisfied and a negative slack means the required
arrival time is in a violation.

Consider a sample circuit in Fig. 3, where two data paths
feed a common FF. Numbers enclosed within parentheses
denote the earliest and latest delay of a circuit node. Assuming
all wire delays and arrival times of primary inputs are zero, we
perform the setup test on FF3. The latest required arrival time
of FF3 is obtained by subtracting the values of clock period
plus the earliest arrival time at the clock pin of FF3 from the
value of setup constraint, which is equal to (120 + (20 +
10 4+ 10)) — 30 = 130. The respective latest arrival times of
data path 1 and data path 2 at the data pin of FF3 are 25 + 30
+ 40 4 50 = 145 and 25 + 45 4 40 + 50 = 160. Using (2),
the setup slacks of data path 1 and data path 2 are 130 — 145
= —15 (failing) and 130 — 160 = —30 (failing), respectively.
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III. COMMON-PATH-PESSIMISM REMOVAL

The dual-mode STA has greatly enabled timers to effec-
tively account for any within-chip variation effects. However,
the dual-mode analysis inherently embeds unnecessary pes-
simism, which results in an over-conservative design. Take
the slack of data path 1 in Fig. 3 for example. The pessimism
arises with buffer B1 since it was accounted for both earliest
and latest delays at the same time which is physically impos-
sible. In general, the pessimism of two circuit nodes appears
in the common path from the clock source to the closest point
to which the two nodes converge through upstream traversal.
Such point is also referred to as clock reconverging node. The
true timing without pessimism can be obtained by adding the
final slack to a credit which is defined as follows [6]:

credit?d = atl;;,te - atilafly 3)

-.setup _ . late earl late earl
credit, )P = at,® —atg,™ — (at, —at] y) 4)

setup _ setup - setup
slack o cppr = slack . cppg + credity,, (5)

hold _ hold : <hold
slack g cppr = slackpcppg + credit, ;" (6)

Notice that r is the clock source and cp is the clock
reconverging node of nodes u# and v. Since setup test com-
pares the data point against the clock point in the subsequent
clock cycle, the credit rules out the arrival time at the clock
source [6]. The slack prior to CPPR is referred to as pre-CPPR
slack and post-CPPR slack otherwise. For the same instance in
Fig. 3, the credits of data path 1 and data path 2 for setup test
are, respectively, 5 and 40, which in turn tell their true slacks
being —15 + 5 = —10 (failing) and —30 + 40 = 10 (pass-
ing). A key observation here is that the most critical pre-CPPR
slack (data path 2) is not necessarily reflective of the true crit-
ical path (data path 1). Analyzing the single-most critical path
during CPPR is obviously insufficient. In practice, reporting
a number of ordered critical paths for a given test rather than
merely the single-most critical one is relatively necessary and
important.

IV. PRIOR WORKS

Removing pessimism from the design during timing analy-
sis is integral to meeting chip timing, area, and power targets.
To this end, existing STA tools continue to invest heavily
in research and development on this topic and explore new
ideas and concepts to improve CPPR runtime and memory
usage [11]. Predominant approach relies on identifying a set
of critical paths without CPPR first. Then the CPPR credit
of each of these paths are discovered through the traver-
sal on the clock network, after which the true slack can be
retrieved [8], [9]. Based on this framework, straightforward
heuristics such as dominator grouping for clock reconverging
nodes [5], hierarchical timing analysis [7], branch-and-bound
pruning [12], [13], and CPPR credit caching [14] are proposed
to either shrink the solution space or reduce the computational
complexity. However, these works suffer from a common
drawback of exhaustive search space. In spite of fine-tuned
heuristics, the resulting performance is always case-by-case
and has no guaranteed characteristics of polynomial space and
time complexity.
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Algorithm 1: UI-Timer_1.0(z, k)

Input: test ¢, path count k
Output: solution set W of the top-k critical paths

1 BuildCreditLookupTable();

2 Gp < pessimism-free graph for the test #;

3 W < GetCriticalPath(Gy.source, Gp.destination, k);
4 return V;

V. PROBLEM FORMULATION

The circuit network is input as a directed-acyclic graph
G = {V,E}. V is the node set with n nodes which specify
pins of circuit elements (e.g., primary IO, logic gates, FFs,
etc.). E is the edge set with m edges which specify pin-to-
pin connections. Each primary input, i.e., the node with zero
indegree, is assigned by an earliest arrival time and a latest
arrival time. Each edge e or ¢, is directed from its tail node
u to head node v and is associated with a dual tuple of earliest
delay delayiarly and latest delay delay!3©. A path is an ordered
sequence of nodes (vi,vz,...,v,) or edges (er,ez,...,eyn)
and the path delay is the sum of delays through all edges.
In this paper, we are in particular emphasizing on the data
path, which is defined as a path from the clock source pin
of an FF to the data pin of another FF. The arrival time of a
data path is the sum of its path delay and arrival time from
where this data path originates. The clock tree is a subgraph
of G which distributes the clock signal with clock period
Tk from the tree root r to all the sequential elements that
need it. A test is defined with respect to an FF as either a
hold check or setup check to verify the timing relationship
between the clock pin and the data pin of the FF, so that
the hold requirement Tholg Or setup requirement Tseqyp iS met.
We refer to the testing FF as destination FF and those FFs
having data paths feeding the destination FF as source FFs.
Using the above knowledge, the CPPR problem is formulated
as follows.

Objective: Given a circuit network G and a hold or setup
test ¢ as well as a positive integer k, the goal is to identify the
top k critical paths (i.e., data paths that are failing for the test)
from source FFs to the destination FF in ascending order of
post-CPPR slack.

VI. ALGORITHM

The overall algorithm of Ul-Timer 1.0 is presented in
Algorithm 1. It consists of two stages: 1) lookup table pre-
processing and 2) pessimism-free path search. The goal of
the first stage is to tabulate the common path information for
quick lookup of credit, while the goal in the second stage is
to identify the top-k critical paths in a pessimism-free graph
derived from a given test. We shall detail in this section each
stage in bottom-up fashion.

A. Lookup Table Preprocessing

In graph theory, the clock reconverging node of two nodes
in the clock tree is equivalent to the lowest common ances-
tor (LCA) of the two nodes. The arrival time information of
each node in the clock tree can be precomputed and therefore
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Fig. 5. Range minimum query to the level table from Fig. 4.

the credit of two nodes can be obtained immediately once
their LCA is known. Many state-of-the-art LCA algorithms
have been invented over the last decades. The table-lookup
algorithm by [15] is employed as our LCA engine due to its
simplicity and efficiency. For a given clock tree, we build three
tables as follows.
1) The Euler table E records the identifiers of nodes in the
Euler tour of the clock tree; E[{] is the identifier of ith
visited node.

2) The level table L records the levels of nodes visited in
the Euler tour; L[i] is the level of node E[i].

3) The occurrence table H[v] records the index of the first
occurrence of node v in array E.

As aresult, the LCA of a node pair (u, v) is the node situated
on the smallest level between the first occurrence of u the and
first occurrence of v. We have the following lemma.

Lemma 1: Denoting the index of the node with the small-
est level between the index @ and b in the level table L
as MinL(a, b), the LCA of a given node pair (u, v) is
E[MinL(H[u], H[v])].

Take the LCA of FF1 and FF3 in Fig. 4 for example. The
occurrence indices of FF1 and FF3 in Euler tour are 2 and 7,
respectively. Referring to the indices between 2 and 7 in the
level table, the node with the lowest level is situated in the
third position of the Euler table. Hence, the LCA of FFI and
FF3 is vy. It is obvious the operations taken on occurrence
table and Euler table can be done in constant time. Finding
the position of an element with the minimum value between
two specified indices in level table [i.e., the value returned by
function MinL(a, b) for a given index pair a and b] is the major
task. We adopt the sparse-table solution whereby a 2-D table
M(i][ /] is used to store the index of the minimum value in the
level table starting at i having length 2/ [15]. This concept is
visualized in Fig. 5.

Fig. 5 indicates that the optimal substructure of M[i][/] is
the minimum value between the first and second halves of
the interval with 27~! length each. Hence, the table M can
be fulfilled using dynamic programming with the following
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Algorithm 2: BuildCreditLookupTable(G)

Input: circuit network G

1 Build tables E, L, H via Euler tour starting at the root r of clock tree;
2 size] < L.size;

3 sizey < |log(L.size)];

4 Create a 2-D table M with size size| x (sizep + 1);

5 for i < 0 to sizey — 1 do
6 | MIi0] < i

7 end

8 for j < 1 to sizep — 1 do

9 for i < 0 to size| — 2 do

10 if LIM[i][j — 11] < LIM[i + 2~ 1][j — 1]] then
1 | ML < ML — 1

12 else )

1 | ML < ML+ 271 - 1
14 end

15 end

16 end

recurrence:

i, base case j =0

MIil[j — 1], if L[M[i[j — 1]]
<L[M[i+27"[j-1]]

M[i+27"[j—1]. otherwise.

ML j] =

Provided the table M has been processed, the value of
MinL(a, b) can be computed by selecting two blocks that
entirely cover the interval between a and b and returning
the minimum between them. Let ¢ be [log(b — a + 1)] and
assume b > a, the following formula is used for computing
the value of MinL(a, b):

Mlallcl, if L[M[allc]] = LIM[b — 2¢ + 1][c]]

MinL(a, b) = .
M[b — 2¢ + 1][c], otherwise.

The procedure of building tables E, L, H, and M is pre-
sented in Algorithm 2. Tables E, L, and H can be built using
depth-first search starting at the root of the clock tree (line 1),
while table M is fulfilled via bottom-up dynamic programming
(line 2:16). Using these tables as infrastructure, the credit of
two given nodes in the clock tree can be retrieved in constant
time by Algorithm 3. The LCA of the two given nodes is found
first (line 1:12). Then for the hold test, the credit is returned as
the difference between the latest arrival time and the earliest
arrival time at the LCA (line 14:15). For the setup test which
performs timing check in the subsequent clock cycle, the credit
excludes the arrival time at the clock source (line 16:18). We
conclude the lookup table preprocessing by Theorem 1.

Theorem 1: Ul-Timer 1.0 builds lookup tables E, L, H, and
M in O(nlogn) space and O(nlogn + m) time. Using these
lookup tables, the credit of two given nodes in the clock tree
can be retrieved in O(1) time.

B. Formulation of Pessimism-Free Graph

In the course of hold or setup check, the required arrival
time of the destination FF and the amount of pessimism
between each source FF and the destination FF remain fixed
regardless of which data path is being considered. Precisely
speaking, the way data paths passing through plays the most
vital role in determining the final slack values. In order
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Algorithm 3: GetCredit(u, v)

Input: nodes u and v

1 if u or v is not a node of the clock tree then

2 | return 0;

3 end

4 if H[u] > H[v] then

s | swap(u, v)

6 end

7 ¢ < llog(H[u] — H[v] + 1)] ;

s if L{M[H[u])[c]] < LIM[H[v] — 2° + 1][c]] then
9 | lca < EM[H[ul][c]];

10 else
n |
12 end
13 if hold test then
14 ‘
15 else

lca < E[M[H[v] — 2¢ + 1][c]l;

late _  early,
return aty., at,.. s

r < root of the clock tree;

late early (atlute
r

early .
lca — atlcu — aly )

return at

18 end

@ Source

FF clock
pin

@ Source FF

@ Destination

Woffset //
/ -
—
(s %<
\ ~

Source N
\

LY 23
Artificial edges

>
Data path

Fig. 6. Derivation of pessimism-free graph from a given test.

to facilitate the path search without interleaving between
slack computation and pessimism retrieval, we construct a
pessimism-free graph G, = {V),E,} for a given test ¢ as
follows.

Rule 1: We designate the data pin d of the destination FF
the destination node and artificially create a source node s
and connect it to the clock pin i of each source FF. Denoting
the set of artificial edges as E;, we have V), = VI U{s} and
E, =E|JE;.

Rule 2: We associate: 1) offset weight with each artificial
edge and 2) delay weight with each ordinary circuit connection
as follows.

1) Veyoi € Ey, who'd = credith%) — rat;™ + af

2) Ves_.; € Eg, W:LUIP = creditff;up

3) Ve € E, whold = delay™™.

4) Ye ¢ E, wi™ = —delay'ate,

An example of pessimism-free graph is shown in Fig. 6.
The intuition is to separate out the constant portion of the
post-CPPR slack by an artificial edge such that the search pro-
cedure can focus on the rest portion which is totally depending
on the way data paths passing through. It is clear that the cost
of any source—destination path (i.e., sum of all edge weights)
in the pessimism-free graph is equivalent to post-CPPR slack
of the corresponding data path which is obtained by removing

early
S
+ ratlde — agate,
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TABLE I
DATA FIELD OF A PREFIX TREE NODE

Member Definition
P pointer to the parent node
e deviation edge
w cumulative deviation cost
c credit for pessimism removal
| Constructor | PrefixNode(p, e, w, ¢) |

the artificial edge. This crucial fact is highlighted in the
following theorem.

Theorem 2: The cost of each source—destination path in the
pessimism-free graph G, is equal to the post-CPPR slack of
the corresponding data path.

Proof: The cost of a source—destination path can be written
as the delay of the corresponding data path p from the source
FF i to the destination FF d plus the offset weight associated
with the edge es—,;. The path cost for hold test is credit?‘;}d -

rat™™ 4+ at?arly + > eepdelaygarly and credit?i}uP + ratlde —
atld®® — Zeepdelaylate for setup test. It is clear that by defi-

P
nition the cost is just the post-CPPR slack of a given path in
either hold test or setup test. |

On the basis of Theorem 2, the problem of identifying the
top-k critical paths for a given test is similar to the path rank-
ing problem applied to the pessimism-free graph. A number
of state-of-the-art algorithms for path ranking have been pro-
posed over the past years [16]-[20]. The best time complexity
acquired to date is O(m + nlogn + k) from the well-know
Eppstein’s algorithm [17]. However, it relies on sophisticated
implementation of heap tree which results in little practical
interests. Moreover, most existing approaches are developed
for general graphs and lack a compact and efficient special-
ization to certain graphs such as the directed-acyclic circuit
network. We shall discuss in the following sections the key
contribution of UI-Timer 1.0 in resolving these deficiencies.

C. Implicit Representation of Data Path

Although explicit path representation is the major pursuit
of existing approaches, the inherent restriction makes it diffi-
cult to devise efficient algorithms with satisfactory space and
time complexities [8], [9]. UI-Timer 1.0 performs implicit path
representation instead, yielding significant improvements on
memory usage and runtime performance. While the spirit is
similar to [17], our algorithm differs in exploring a more com-
pact and efficient way to implicit path search and explicit path
recovery. We introduce the following definitions.

Definition 1 (Suffix Tree): Given a pessimism-free graph,
the suffix tree refers to the successor order obtained from the
shortest path tree T, rooted at the destination node.

Definition 2 (Prefix Tree): The prefix tree is a tree order of
nonsuffix-tree edges such that each node implicitly represents
a path with prefix from its parent path deviated on the corre-
sponding edge and suffix followed from the suffix tree. The
root which is artificially associated with a null edge refers to
the shortest path in 7. Table I lists the data field to which we
apply for each node.
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Path suffix: <e;,>

+ Path prefix: <e;, e5, ¢;/> = Path: <e;, ey, €71, €15~

Fig. 7. Implicit path representation using suffix tree and prefix tree.

Algorithm 4: RecoverDataPath(pfx, end)
Input: prefix-tree node pointer pfx, node end

beg < head|pfx.el;
if pfx.p # NIL then
| RecoverDataPath(pfx.p, tail[pfx.e]);

end

while beg # end do
Record the path trace through pin “beg”;
beg < successor[beg]

end

Record the path trace through pin “end”;

T

e % 9 »m

Algorithm 5: Slack(pfx, s, r)

Input: prefix-tree node pointer pfx, source node s, CPPR flag r
Output: post-CPPR slack for true flag r or pre-CPPR slack otherwise

if r = true then

| return pf.w + dis[s];
end
return pfx.w + dis[s] - pfx.c;

B WO =

An example is illustrated in Fig. 7. The suffix tree is
depicted with bold edges and numbers on nodes denote the
shortest distance to the destination node. Dashed edges denote
artificial connections from the source node. The shortest path
is (e3, eg, e12, e15) which is implicitly represented by the root
of prefix tree. The prefix tree node marked by “eq;” implic-
itly represents the path with prefix (es, eg) from its parent path
deviated on e and suffix (e14) following from the suffix tree.
As a result, explicit path recovery can be realized in a recursive
manner as presented in Algorithm 4.

In order to retrieve the path cost, we keep track of the
deviation cost of each edge e, which is defined as follows [17]:

dvi[e] = dis[head[e]] — dis[tail[e]] + weight[e]. @)

Notice that dis[v] denotes the shortest distance from node v
to the destination node. Intuitively, deviation cost is a non-
negative quantity that measures the distance loss by being
deviated from e instead of taking the ordinary shortest path
to destination. Therefore for each node in the prefix tree, the
corresponding path cost (i.e., post-CPPR slack) is equal to
the summation of its cumulative deviation cost and the cost
of shortest path in 7. Algorithm 5 realizes this process. We
conclude the conceptual construction so far by the following
two important lemmas.

Lemma 2: Ul-Timer 1.0 deals with the implicit representa-
tion of each data path in O(1) space and time complexities.
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Algorithm 6: Spur(pfx, s, d, Q)

Input: prefix-tree node pointer pfx, source node s, destination node d,
priority queue Q

1 u < head|pfx.e];

2 while u # d do

3 for ¢ € fanout(u) do

4 v < head|e];

5 if v = successor[u] or v is unreachable then
6 | continue;

7 end

8 pfx_new < new PrefixNode(pfx, e, pfx.w + dvilel, pfx.c);
9 if Slack(pfx_new, s, true) < 0O then

10 |  Q.enque(pfx_new);

1 end

12 end

13 u < successor[u];

14 end

Lemma 3: The cumulative deviation cost of each node in
the prefix tree is greater than or equal to that of its parent
node.

Above lemmas are two obvious byproducts of our prefix
tree definition. Lemma 2 tells that UI-Timer 1.0 stores each
data path in constant space and records or queries important
information such as credit and slack in constant time. While
Lemma 3 is true due to the monotonicity, we shall demonstrate
in the next section its strength and simplicity in pruning the
search space.

D. Generation of Top-k Critical Paths

We begin by presenting a key subroutine of our path gener-
ating procedure—Spur, which is described in Algorithm 6. In
a rough view, Spur describes the way Ul-Timer 1.0 expands
its search space for discovering critical paths. After a path p;
is selected as the ith critical path, each node along the path p;
is viewed as a deviation node to spur a new set of path candi-
dates (line 2:14). Any duplicate path should be ruled out from
the candidate set (lines 1 and 5:7) and each newly spurred path
is parented to the path p; in the prefix tree (line 8). Having
a path candidate with non-negative post-CPPR slack, the fol-
lowing search space can be pruned and is exempted from the
queuing operation (line 9:11). This simple yet effective prune
strategy is a natural result of Lemma 3 due to the monotonic
growth of path cost along with our search expansion.

Lemma 4: The procedure Spur is compact, meaning every
path candidate is generated uniquely.

Proof: Suppose there is at least a pair of duplicate path
candidates p; and pp, which are implicitly represented by &;
and &, the sets of deviation edges. Since p; and p, are iden-
tical, & and & must be identical as well. If both & and &
contain only one edge, the respective prefix tree nodes must
be parented to the same node, which is invalid due to the
filtering statement in line 5:7. If both &; and & contain mul-
tiple edges, there exists at least two distinct permutations in
the prefix tree that represent the same path. However, this will
results in a cyclic connection of edges which violates the graph
property of the circuit network. Therefore, by contradiction the
procedure Spur is compact. |

Lemma 5: The procedure Spur takes O(n + mlogk) time
complexity.
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Algorithm 7: GetCriticalPath(s, d, k)

Algorithm 8: SweepReport(7, k)

Input: source node s, destination node d, path count k
Output: solution set W of the top-k critical paths

1 Build the suffix tree by finding the shortest path tree rooted at d;
2 Initialize a priority queue Q keyed on cumulative deviation cost;
3V <0

4 num_path < 0;

5 for e € fanout(s) do
6 credit < GetCredit(head[e], d);

7 pfx < new PrefixNode(NIL, e, dvile], credit);
8 if Slack(pfx, s, true) < O then

9 |  Q.enque(pfy);

10 end

11 end

12 while Q is not empty do

13 pfx_new < Q.deque();

14 num_path < num_path + 1;

15 W <« W [ RecoverDataPath(pfx, d);
16 if num_path > k then

17 | break;

18 end

19 Spur(pfx, s, d, Q);

20 end

21 return V;

Proof: The entire procedure takes up to n phases on scan-
ning a given path and spurs at most m new path candidates. We
maintain only the top-k critical candidates ever seen such that
the maximum number of items in the priority queue at any
time will not exceed k. This can be achieved in O(mlogk)
time using a min-max priority queue [21]. Therefore, the total
complexity is O(n + mlogk). |

Using Algorithms 4—6 as primitive, the top-k critical paths
can be identified using Algorithm 7. Prior to the search, we
construct the suffix tree by finding the shortest path tree rooted
at the destination node d in the pessimism-free graph (line 1).
Then each of the most critical paths from source FFs to the
destination FF is viewed as an initial path candidate (line 5:11).
The major search loop (line 12:20) iteratively looks for a path
with lowest cumulative deviation cost from the path candidate
set and performs spurring operation on it. Iteration ends when
we have extracted k paths (line 16:18) or no more steps can
be proceeded. Finally, we draw the following two theorems.

Theorem 3: Ul-Timer 1.0 is complete, meaning that it can
exactly identify the top-k critical paths for each hold test or
setup test without common path pessimism.

Proof: Proving the completeness of UIl-Timer 1.0 is
equivalent to showing that the major search framework of
Ul-Timer 1.0 is exactly identical to a typical graph search
problem [20]. The search space or search tree of UI-Timer 1.0
grows equivalently with the prefix tree, in which each state rep-
resents a path implicitly. Spur is responsible for neighboring
expansion, iteratively including a set of new deviation edges
as tree leaves or search frontiers. Since by definition all paths
can be viewed as being deviated from the shortest path, the
initial state is equivalent to the root of the prefix tree. Using a
priority queue, the items or paths extracted are in the order of
criticality. |

Theorem 4: Ul-Timer 1.0 solves each hold test or setup test
in space complexity O(nlogn 4+ m + k) and time complexity
O(nlogn + kn 4 kmlogk).

Input: test vector 7, path count k
Output: solution vector W of the top-k critical paths for each test

1 BuildCreditLookupTable();

2 #Parallel for index i in range(t) do

3 GI"7 < pessimism-free graph for the test 7[i];

4 @[i] <« GetCriticalPath(GL.Source, G;.destination, k);
5 end

6 return @;

Proof: The space complexity of Ul-Timer 1.0 involves
O(n + m) for storing the circuit graph, O(nlogn) for lookup
table, and O(n) for the suffix tree as well as O(k) for
the prefix tree. As a result, the total space requirement is
O(nlogn 4 n + k). On the other hand, it takes up to k iter-
ations on calling the procedure Spur in order to discover the
top-k critical paths. Recalling that the lookup table is built in
time O(nlogn) and the suffix tree can be constructed in time
O(n+ m) using topological relaxation, the time complexity of
Ul-Timer 1.0 is thus O(nlogn + kn + kmlogk). |

An exemplification is given in Fig. 8. Fig. 8(a) illustrates a
suffix tree derived by computing the shortest path tree rooted
at the destination node from a given pessimism-free graph.
Fig. 8(b) shows a total of four paths are spurred from the
current-most critical path p; = (es, eg, e12, e15) in the first
search iteration. For instance, the path with deviation edge
e11 has cumulative cost equal to 0 + (6 — 5 + 3) = 4.
The corresponding explicit path recovery is (e3, eg, €11, €14)
as a result of combining the prefix of p; ending at the tail of
e11 and the suffix from the suffix tree beginning at the head
of eq1. On the other hand, the path with deviation edge e; has
deviation cost equal to 0 + (7 — (—12) + 0) = 19 which
in turns tells the value of its post-CPPR slack being —12 +
19 = 7. Since the post-CPPR slack has been positive already,
by Lemma 3 the following search space can be pruned (node
marked with a slash “/”). Accordingly in the end of this iter-
ation, only three of the four spurred paths are explored as
search frontiers from the parent path p;. Fig. 8(c)—(f) repeats
the same procedure except no more paths are spurred from the
fourth and fifth search iterations.

VII. APPLICATION TO MULTIPLE TESTS

The architecture of UI-Timer 1.0 is developed on the basis
of one test at one time. That is, each test is regarded as
an independent input and has no dependence on each other.
For applications where multiple tests are designated, a read-
ily available parallel framework can be carried out by forking
multiple threads with each operating on a subset of tests. With
the shared lookup table and the circuit graph, we impose the
least memory requirement by maintaining only private infor-
mation about the suffix tree and the prefix tree for each thread.
A number of tests with up to the maximum number of threads
supported by the machine can be simultaneously processed.
One multithreaded application is presented in Algorithm 8, in
which we sweep the test and report the top-k critical paths for
each test.
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Exemplification of UI-Timer 1.0. (a) UI-Timer 1.0 builds a suffix tree in the initial iteration by finding the shortest path tree rooted at the target

node. (b) During the first search iteration, four paths are spurred from the most critical path (e3, eg, €12, €15). (¢) During the second search iteration, one path
is spurred from the second critical path (e;, eg, e14). (d) During the third search iteration, one path is spurred from the third critical path (e, e7, €12, e15).
(e) No path is generated from the forth and fifth search iterations. (f) During the sixth search iteration, one path is spurred from the sixth critical path

(eq, €10 €13, €15)-

Algorithm 9: GetCriticalTest(7, k)

Algorithm 10: BlockReport(7, k)

Input: test vector 7, test count k
Output: the set Q of the top-k critical tests

BuildCreditLookupTable();

#Parallel for index i in range(t) do
Gf, < pessimism-free graph for the test 7]i];
p < GetCriticalPath(Gf,.source, Gl’;.destination, 1);
t.criticality < p.slack;

end

sort 7 according to criticality;

Q < top-k tests in 7

return ﬁ;

R I N R SR

As opposed to the sweep report in Algorithm 8, block report
is another common application where probing the top-k crit-
ical paths across all timing tests is the main goal. We refer
the criticality of a test to the slack value of the top most criti-
cal path extracted from this test. It is intuitive by set property
that the top-k critical paths must exist in the path set gener-
ated from the top-k critical tests. Therefore, we first develop
Algorithm 9 to peel the top-k critical tests out of a given test
set. Algorithm 9 sweeps the test set and finds the most critical
path for each test (line 1:4). The post-CPPR slack value of
each path is used as the criticality of the corresponding test
(line 5). A sorting procedure is then followed so as to peel
out the top-k critical tests (line 7:9).

Using Algorithm 9, the function of block report for the
globally top-k critical paths is constructed in Algorithm 10.
We first apply Algorithm 9 to peel out the top-k critical
tests (line 1). Since it has been shown that the globally

Input: test vector 7, path count k
Output: the set W of the globally top-k critical paths across 7

Q <« GetCritical Test(7, k);

1
2 Q < priority queue keyed on slack values;

3 for 1€ Q do

4 if Q.size = k and r.criticality > Q.top_max then

5 | break;

6 end

7 G1t7 < pessimism-free graph for the test ;

8 0« QU GetCriticalPath(Gf,.source, Gf,‘destination, k);
9 Q.maintain_top_k_min(k);

10 end

1n U« paths from the priority queue Q;

12 return @;

top-k critical paths must be investigated from these tests, we
iteratively extract the top-k critical paths from each of the
top-k critical tests (line 3:10). An efficient min-max priority
queue [21] is employed to dynamically maintain the solution
paths (line 2) and prune unnecessary search (line 4:6).

Theorem 5: The function SweepReport in Algorithm 8
takes O(nlogn + [f|(kn + kmlogk)/C) time complexity, where 7
is the input test vector and C is the number of available cores
or threads.

Proof: Algorithm 8 exerts the core procedure of
UI-Timer 1.0 on a given test vector 7. A sequential version
hence takes O(nlogn + [f|(kn + kmlogk)) time complex-
ity. Notice that the lookup tables for CPPR credit only
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needs one-time building, which takes O(nlogn) time com-
plexity. Running Algorithm 8 in a machine with C cores or
C threads supports a parallel reduction by up to a factor
of C. Therefore, the runtime complexity of sweep report is
O(nlogn + [f|(kn + kmlogk)/C). |

Theorem 6: The function GetCriticalTest in Algorithm 9
takes O(nlogn + (n + m)/C + [f]log [7] + k) time complex-
ity, where 7 is the input test vector and C is the number of
available cores or threads.

Proof: The first section (before sorting) of Algorithm 9 is
nearly the same as Algorithm 8, except that only the single
most critical paths is generated. Therefore, the time complexity
is O(nlogn+ [f|(n+m)/C). Afterward, sorting the test vector
7 takes O([f]log[7]) time complexity and outputting the top-
k critical tests takes linear time complexity O(k). Hence, the
entire runtime complexity of Algorithm 9 is O(nlogn + (n +
m)/C + (A log 7] + k). n

Theorem 7: The function BlockReport in Algorithm 10
takes O(nlogn + (n + m)/C + [f|log[1] + k*n + k*>mlogk)
time complexity, where 7 is the input test vector and C is the
number of available cores or threads.

Proof: Algorithm 10 first calls Algorithm 9 to obtain the
top-k critical tests from a given test vector 7, which takes
O(nlogn + (n + m)/C + [f]log[f] + k) time complexity.
Generating the globally top-k critical paths involves k itera-
tions calling Algorithm 7. Besides, each iteration requires k
logarithmic operations in order to maintain the top-k critical
paths in the priority queue. The time complexity of each iter-
ation is thus O(kn + kmlogm + klogk). As a result, the total
time complexity of block report is O(nlogn 4 (n + m)/C +
[711og [1] + k*n + kK*mlog k). ]

VIII. IMPLEMENTATION AND TECHNICAL DETAILS

In this section, we highlight two implementation techniques
that are practical for the improvement of runtime performance,
despite not reducing the theoretical bound. It is observed from
the program profiler that the majority of the runtime is spent
on the construction of suffix tree, which is equivalent to find-
ing the shortest path tree in the pessimism-free graph. The
shortest path routines such as storage initialization, distance
relaxation, and fanin/fanout scanning typically exhibit wild
and deep swing in the search space and consume a huge
amount of CPU instructions. The problem becomes even criti-
cal when multiple tests are taken into account. To remedy this
problem, two verified trials are worth delivering.

A. Memory Pool for Efficient Storage Initialization

Constructing the suffix tree is equivalent to discovering the
shortest path tree rooted at the target node of the pessimism-
free graph. A generic framework of any shortest path algo-
rithms requires two data arrays, distance and successor, for
storing the distance labels and shortest path tree connection,
respectively [22]. Before the relaxation on distance labels takes
effect, programmer should clear the two arrays by assigning an
infinite value to every distance entry and a nil value to every
successor entry. Nonetheless, real applications come with mul-
tiple tests. This linear procedure will be repeated for each
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Algorithm 11: is_prunable(m, p, dis)

Input: test type m, a pin p, a distance array dis
Output: true if p is prunable from the suffix tree or false otherwise

1 if m = HOLD then
if dislp] + ais™™ > cutoff then
| return true;
end
end
if dis[p] — at[l,“’e > cutoff then
| return true;
end
return false;

I R I 7 NV Y

test and the accumulative runtime becomes non-negligible.
Furthermore, in most cases each test involves only a small
portion of the entire circuit graph in labeling process. It is
desirable to clear those entries ever participating in the pre-
vious search. To this end, we preallocate a memory pool for
distance and successor arrays and clear their memory values in
the very beginning. We also keep track of those entries whose
values were ever modified in the course of shortest path rou-
tines and clear these entries by the end of function return. As a
consequence, the computational effort on storage initialization
can be minimized.

B. Redundant Search Space Pruning

Reducing the size of suffix tree is another effective way
to decrease the runtime, and it can be beneficial for the later
search on prefix paths. Since we consider only violating points,
any suffix paths discovered so far with positive value can be
discarded so as to prune the subsequent search space. In the
course of shortest path search, the worst timing quantities at a
given pin (which can be precomputed) provide a lower bound
and a upper bound on the minimum hold and maximum setup
path slack that are reachable from this pin. An A*-like pruning
strategy can thus be employed, as presented in Algorithm 11.
Notice that without loss of generality one can replace the
cutoff value with any user-specified slack threshold and this
has no impact on the overall correctness subject to a proper
implementation of shortest path algorithms.

Lemma 6: The pruning strategy in Algorithm 11 is correct,
meaning that the derived suffix tree contains no path suffix of
which having slack value larger than the given cutoff value.

We have proved that the cost of any source—destination path
in the pessimism-free graph is identical to the slack value of
the corresponding data path. In hold time test, the distance
value of a pin p, denoted as dis[p], represents the potential
slack value discovered so far from the destination. The earliest
arrival time at this pin, denoted as at[ejarly , is the minimum delay
that will be added for any complete data paths suffixed at the
pin p. That is, the slack values of such paths are lower-bounded
by dis[p] + atf;aIly and any search points exceeding the cutoff
values can be pruned. The proof for the setup time test can be
drawn in a similar way.

IX. EXPERIMENTAL RESULTS

Ul-Timer 1.0 is implemented in C+4 language on a
2.67 GHz 64-bit Linux machine with 8 GB memory.
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Fig. 9.
worst pre-CPPR slack value of each test.

The application programming interface (API) provided by
OpenMP 3.1 is used for our multithread parallelization [23].
Our machine can execute a maximum of four threads con-
currently. Experiments are undertaken on a set of circuit
benchmarks released from TAU 2014 CAD contests [3]. The
benchmarks are modified from well-known industrial circuits
(e.g., s27, s510, systemcdes, wb_dma, pci_bridge32, vga_lcd,
etc.) that have been released to the public domain for research
purpose. Statistics of these circuits are summarized in Table II.
All benchmarks are associated with multiple tests. The three
largest circuits, Combo5—-Combo7, have million-scale graph
data. For example, the circuit Combo6 has 3 577 926 pins and
3843033 edges.

A. Effectiveness of CPPR

Fig. 9 depicts the impact of CPPR on hold and setup
test slacks for circuits des_perf and vga_lcd. The horizon-
tal and vertical axes in the plots denote the pre-CPPR
slack and the post-CPPR slacks, respectively. Each plot is
attached a reference line with slope 1.0 indicating the iden-
tical slacks. It is observed that each post-CPPR slack is at
least the pre-CPPR slack value and most post-CPPR slack
values are improved. The plots indicate the effectiveness of
CPPR during design closure from designers’ perspective. The
synthesis and optimization tools can focus their efforts on
true timing-critical paths and optimize these paths only by
the amount necessary to meet the target clock frequency of
the chip.
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Impact of CPPR on hold and setup time slacks for circuits aes_core, mem_ctrl, wb_dma, and systemcaes. Data points are sampled based on the

B. Comparison With TAU 2014 CAD Contest Entries

We first compare UI-Timer 1.0 with the final entries in TAU
2015 CAD contest. Adhering to contest rules, we ran the timer
for each circuit benchmark with different path counts k from
1 to 20 across all setup and hold tests and collected averaged
quantities on runtime and accuracy for comparison. The accu-
racy is measured by the percentage of mismatched paths to
a golden reference generated by an industrial timer [3], [6].
Table II lists the overall performance of UI-Timer 1.0 in com-
parison to the top-3 timers, “Timer-1st,” “Timer-2nd,” and
“Timer-3rd,” for short, from TAU 2014 CAD contest [6]. For
fair comparison, all timers are run in the same environment
with four threads.

We begin by comparing Ul-Timer 1.0 with Timer-2nd.
The strength of Ul-Timer 1.0 is clearly demonstrated in
the accuracy value. Our timer achieves exact accuracy yet
Timer-2nd suffers from many path mismatches. The highest
error rate is observed in the smallest design s27. Unfortunately,
we are unable to report experimental data of ac97_ctrl and
Combo5—Combo7, because Timer-2nd encounters execution
faults. It is expected that Timer-2nd is faster in some cases
as they sacrifice the accuracy for speed. However, the perfor-
mance margin of Timer-2nd can be up to x141.78 worse than
UI-Timer 1.0 in circuit tv80 (i.e., 32.38 versus 0.23) while
the counterpart of Ul-Timer 1.0 is more competitive by at
most x1.85 slower in des_perf (i.e., 3.37 versus 6.25). As a
result, the solution quality of UI-Timer 1.0 is more stable and
reliable, especially for high-frequency designs where accuracy
is the top priority of timing-specific optimizations.
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TABLE 1T
COMPARISON BETWEEN UI-TIMER 1.0 AND THE TOP-3 WINNERS, TIMER-1ST, TIMER-2ND, AND TIMER-3RD FROM TAU 2014 CAD CONTEST [6]
Cireuit v |E| 1| # Tests # Paths Timer-2nd Timer-3rd Timer-1st UI-Timer 1.0
AER | MER CPU AER CPU AER CPU AER CPU
27 109 112 6 6 9 9.97 | 50.00 0.20 0 0.40 0 0.20 0 0.01
s344 574 658 16 11 11 0 0 0.22 0 0.53 0 0.22 0 0.02
$349 598 682 16 11 11 0 0 0.25 0 0.53 0 0.22 0 0.02
s386 570 701 7 9 7 0 0 0.20 0 0.49 0 0.20 0 0.02
s400 708 813 22 5 6 0 0 0.23 0 0.56 0 0.21 0 0.02
s510 891 1091 7 21 7 0 0 0.18 0 0.40 0 0.18 0 0.01
$526 933 1097 22 6 0 0 0.25 0 0.56 0 0.22 0 0.02
51196 1928 2400 19 16 14 0 0 0.25 0 0.59 0 0.22 0 0.01
51494 2334 2961 7 10 19 0 0 0.25 0 0.58 0 0.21 0 0.02
systemcdes 10826 13327 1967 380 41436 6.79 | 32.89 2.27 0 3.62 0 0.14 0 0.09
wb_dma 14647 17428 5218 1374 158 7.46 | 39.30 0.23 0 0.90 0 0.28 0 0.19
tv80 18080 23710 3608 838 19227963 | 8.20 | 43.49 | 32.38 0 23.13 0 0.23 0 0.23
systemcaes 23909 29673 6643 2500 13069928 6.53 29.92 33.23 0 22.44 0 0.62 0 0.37
mem_ctrl 36493 45090 10638 3754 62938 5.41 24.73 0.65 0 3.71 0 0.83 0 0.52
ac97_ctrl 49276 55712 22223 9370 148 - - - 0 2.95 0 1.31 0 0.69
usb_funct 53745 66183 17665 4392 129854 6.43 | 37.87 0.94 0 5.64 0 1.41 0 0.78
pei_bridge32 70051 78282 33474 16450 17296 5.04 | 25.49 2.27 0 14.49 0 4.71 0 2.91
aes_core 68327 86758 5289 2528 21064 6.72 | 31.70 0.68 0 4.46 0 0.96 0 0.62
des_perf 330538 404257 88751 19764 1682 4.60 | 11.89 3.37 0 18.37 0 19.24 0 6.25
vga_led 449651 525615 172065 50182 5281 7.94 | 4321 16.78 0 119.24 0 159.15 0 30.19
Combo?2 260636 284091 171529 29574 62938 470 | 24.07 9.19 0 49.00 0 56.12 0 13.67
Combo3 181831 284091 73784 8294 129854 6.71 | 35.14 3.39 0 20.30 0 11.35 0 4.53
Combo4 778638 866099 469516 53520 19227963 7.93 42.13 205.69 0 557.81 0 333.04 0 78.10
Combo5 2051804 | 2228611 | 1456195 79050 19227963 - - - N/A | >3 hrs 0 1225.50 0 226.47
Combo6 3577926 3843033 2659426 128266 19227963 - - - N/A > 3 hrs 0 3544.04 0 544.36
Combo7 2817561 | 3011233 | 2136913 | 109568 | 19227963 - - - N/A | >3 hrs 0 2485.81 0 464.68

|V|: size of node set.  |E|: size of edge set.  |C/: size of clock tree.
AER/MER: avg/max error rate of mismatched paths (%).

Next we compare UI-Timer 1.0 with Timer-3rd and
Timer-1st. In general, full accuracy scores are observed for
all timers, while UI-Timer 1.0 reaches the goal far faster than
the others. It can be seen that Timer-3rd suffers from signifi-
cant runtime overhead across nearly all benchmarks and fails
to accomplish the three largest designs, Combo5—-Combo7,
within 3 h. Compared to Timer-1st, the first-place winner in
TAU 2014 CAD Contest, our Timer achieves fairly remarkable
speedup across all benchmarks. For example, our timer reaches
the goal by x22.0, x5.3, and x6.5 faster than Timer-1st in
circuits s1196, vga_lcd, and Combo6, respectively. Similar
trend can be found in other cases as well. The speedup curve
becomes more pronounced for large circuits. In terms of mem-
ory profiling, we did not see too much difference between
Ul-Timer 1.0 and other entires. All computations are able to
fit into the main memory with less than 1GB.

We investigate the scalability of UI-Timer 1.0 by varying
the input parameter, the path count k, from 1 to 1000. The
performance comparing UI-Timer 1.0 with the top-3 entires,
Timer-1st, Timer-2nd, and Timer-3rd on two example circuits,
tv80 and systemcaes, is characterized in Fig. 10. We see all
runs are accomplished instantaneously by UI-Timer 1.0 and
the runtime gap to the other timers becomes clear as path count
grows. Take the point of 980 paths for example. UI-Timer 1.0
consumes only 3.41 s while the runtime values for Timer-1st,
Timer-2nd, and Timer-3rd are 10.38, 93.25, and 500.26 s,
respectively. With regard to accuracy, our timer is always exact
and confers a fundamental difference to Timer-2nd which
sacrifices accuracy for speedup.

# Tests: # of setup tests and hold tests.
CPU: avg program runtime (seconds).

# Paths: max # of data paths per test.
-: unexpected program fault.
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Fig. 10. Performance characterization of UI-Timer 1.0, Timer-1st, Timer-2nd,
and Timer-3rd for circuits tv80 and systemcaes.

Finally we give a scatter plot showing the runtime
growth of UlI-Timer 1.0 versus the design size in Fig. 11.
The measurement is taken over the open core series (sys-
temcdes, wb_dma, etc.) and the combo series (Combo2,
Combo3, etc.). We approximate the design size using dis-
crete quantity on the total number of nodes and edges
in the circuit graph. It is convinced by the least square
reference line that the runtime of UI-Timer 1.0 grows lin-
early with respect to the increase of design size. One can
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Fig. 11. Scatter plot on runtime growth and design size for UI-Timer 1.0. Fig. 12. Runtime reduction curve under different slack cutoff values.

TABLE III
COMPARISON BETWEEN UI-TIMER 1.0 AND iTIMERC [13]

L. iTimerC [13] UI-Timer 1.0
Circuit Type
AER CPU AER CPU
Combo2 | hold 0 4.20 0 2.71
Combo2 | setup 0 12.94 0 11.35
Combo3 | hold 0 3.98 0 1.39
Combo3 | setup 0 10.08 0 8.16
Combo4 | hold 0 14.09 0 14.38
Combo4 | setup 0 73.91 0 24.21
Combo5 | hold 0 1334.24 0 47.20
Combo5 | setup | unknown | > 1 hr 0 59.01
Combo6 | hold | unknown | > 1 hr 0 130.60
Combo6 | setup | unknown | > 1 hr 0 127.59
Combo7 | hold | unknown | > 1 hr 0 88.91
Combo7 | setup | unknown | > 1 hr 0 110.90

AER: avg error rate of mismatched paths (%). CPU: runtime (s).

indirectly infer the amount of runtime needed for larger
designs.

C. Comparison With the State-of-the-Art Timer

We have seen the superior performance of UI-Timer 1.0
in comparison to the top-ranked timers in TAU 2014 timing
analysis contest. Ever since the contest was concluded, a few
following works demonstrating promising results have been
published in recent years [12]-[14]. We are particularly inter-
ested in the comparison with the timer, “iTimerC” [13], as it
presented significant improvement to the contest winners. We
observed both timers, iTimerC and Ul-Timer 1.0, performed
very well and achieved close results based on TAU 2014 con-
test environment. In order to discover the performance margin,
we enhance the difficulty and the scale of this experiment on
the six largest benchmarks, Combo2—-Combo7. Each timer is
requested to peel out the top-50 critical tests and report the
top-2000 critical paths for each of the tests. In other words,
evaluation is undertaken under an extreme condition in which
reporting a high number of critical paths over a subset of
critical tests is the goal.

The performance comparison between Ul-Timer 1.0 and
iTimerC [13] is presented in Table III. It can be seen that
Ul-Timer 1.0 achieves highly scalable and reliable perfor-
mance when the design size and query difficulty scale up. The
higher runtime in setup test is expected because most critical
paths come from the violation of setup constraint. Our runtime
is superior in almost all testcases. We have observed significant

runtime speedup to iTimerC by more than an order of magni-
tude for million-scale graphs, Combo5-Combo7. Considering
the hold tests in ComboS5, UI-Timer 1.0 requires only 47.20 s
which is x28.27 faster than that by iTimerC. For the rest of
million-scale graphs, our timer is able to analyze the timing by
less than 3 min, whereas iTimerC cannot finish the program
within 1 h. These results have justified the practical viability
of our timer.

D. Search Space Pruning Through Slack Cutoff

Due to the high complexity of CPPR, modern industrial
timers, in practice, apply various cutoff slack strategies to
prune the search space. For example, the number of CPPR
branching points can be controlled by some tolerance or
threshold values so as to reduce the runtime and memory. As
aforementioned, one important feature of UI-Timer 1.0 is the
ease to control the slack margin, which has the potential to
affect the number of paths generated during CPPR. By default,
Ul-Timer 1.0 reports negative slack and such cutoff value can
be easily tuned since every path is: 1) implicitly represented in
constant time and space and 2) generated in increasing order
of post-CPPR slack values.

The runtime reduction under different cutoff slack values is
plotted in Fig. 12. We run experiments with five cutoff slack
values, 20, 40, 60, 80, and 100 ps on the two largest bench-
marks, Combo6 and Combo7. It is expected that the runtime
decreases as the cutoff slack values increase. The higher the
cutoff slack value is, the less the search space is spanned by
path ranking. In spite of higher pessimism (less CPPR credit),
the curve can be an useful indicator in striking a balance
between program runtime and pessimism margin.

E. Extension to Distributed Computing

We have performed an extra evaluation on a distributed
system running the three largest cases, Combo5—Combo7,
in order to further demonstrate the scalability of our pro-
gram. UIl-Timer 1.0 is advantageous in handling every timing
test independently. In distributed environment, multiple tests
can be evenly partitioned into groups with respect to the
number of cores. Each group is then assigned to one com-
puting node and is analyzed by the timer independently.
The API provided by OpenMPI 1.6.5 is used as our mes-
sage passing interface for distributed computing [24]. The
evaluation is taken on a computer cluster having over 500
compute nodes with each configured with 16 Intel E5-2670
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Fig. 13. Runtime and speedup curves of hold tests and setup tests for

benchmarks Combo5-Combo7 on a distributed system.

2.60 GHz cores and 128 GB RAM. The network infrastruc-
ture is 384-port Mellanox MSX6518-NR FDR InfiniBand for
high speed cluster interconnect [25].

We begin by demonstrating the runtime performance versus
the number of cores that is invoked for running our program.
The core count is varied from 1 to 400 and the runtime is mea-
sured by a synchronized moment at which all process cores
complete their jobs (i.e., reading the file, passing message,
and handling all algorithmic procedures). The performance is
interpreted in terms of the runtime and its relative speedup to a
baseline which was run in single-core execution. Fig. 13 shows
the performance plot of this evaluation. It can be clearly seen
that the runtime is reduced drastically as the number of cores
increases. For example, the setup tests of Combo6 are accom-
plished by less than 1 min with 16 cores, obtaining x5.23
speedup to the single-core execution (266.29 versus 50.95).
Similar speedup curve is also present in other testcases. In a
single minute, hold tests and setup tests of all testcases are
solvable using only 16 cores.

X. CONCLUSION

In this paper, we have presented Ul-Timer 1.0, an exact
and ultrafast algorithm for handling the CPPR problem during
STA. Unlike existing approaches which frequently use exhaus-
tive path search with case-by-case heuristics, our timer maps
the CPPR problem to a graph-theoretic formulation and applies
an efficient search routine using a highly compact and efficient
data structure to obtain an exact solution. We have highlighted
important features of UI-Timer 1.0 such as simplicity, coding
ease, and most importantly the theoretically-proven complete-
ness and optimality. Comparatively, experimental results have
demonstrated the superior performance of Ul-Timer 1.0 in
terms of accuracy and runtime over existing timers.

Future works shall focus on fast incremental timing anal-
ysis with CPPR [26]. Various stages of the design flow such
as logic synthesis, placement, routing, physical synthesis, and
optimization facilitate a need for incremental timing analysis.
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The performance of incremental timing with CPPR plays a key
role in the success of timing optimizations. Due to the path-
specific property of CPPR, CPPR-aware incremental timing
has emerged as one of the major challenges in existing timing
analysis tools [10]. A high-quality CPPR-aware incremental
timer is definitely advantageous to speed up the timing closure.
Distributed timing analysis is also of our interests. As we move
to many-core era, an effective distributed timing algorithm is
important to speed up the timing closure [27], [28].
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