Elaboradar  0.1

◆ HCA_Park() [2/2]

HCA_Park::HCA_Park ( double  Z,
double  ZDR,
double  RHOHV,
double  LKDP,
double  SDZ,
double  SDPHIDP,
double  VRAD,
double  PHIDP,
double  SNR,
double  GPHITH,
double  GPHIPHI,
double  GZTH,
double  GZPHI,
double  GZDRTH,
double  GZDRPHI 
)

Constructor

Definizione alla linea 145 del file classifier.cpp.

147  : z(Z),zdr(ZDR),rhohv(RHOHV),lkdp(LKDP),sdz(SDZ),sdphidp(SDPHIDP), vrad(VRAD),phidp(PHIDP),snr(SNR),gradphitheta(GPHITH),
148  gradphiphi(GPHIPHI),gradZtheta(GZTH),gradZphi(GZPHI),gradZdrtheta(GZDRTH),gradZdrphi(GZDRPHI)
149 {
150  PROB Pij(z,zdr,rhohv,lkdp,sdz,sdphidp,vrad);
151 // CONF Qi; // TODO: confidence vector calculation could produce shit!!
152  CONF Qi(phidp, rhohv, snr, gradphitheta, gradphiphi, gradZtheta, gradZphi, gradZdrtheta, gradZdrphi); // gradients must be precomputed
153 
154  Matrix2D<double> Wij(10,6);
155 // Z Zdr rhohv lkdp SDZ SDphidp
156  Wij << 0.2, 0.4, 1.0, 0.0, 0.6, 0.8, // GC_AP 3.0
157  0.4, 0.6, 1.0, 0.0, 0.8, 0.8, // BS 3.6
158  1.0, 0.8, 0.6, 0.0, 0.2, 0.2, // DS 2.8
159  0.6, 0.8, 1.0, 0.0, 0.2, 0.2, // WS 2.8
160  1.0, 0.6, 0.4, 0.5, 0.2, 0.2, // CR 2.9
161  0.8, 1.0, 0.4, 0.0, 0.2, 0.2, // GR 2.6
162  0.8, 1.0, 0.6, 0.0, 0.2, 0.2, // BD 2.8
163  1.0, 0.8, 0.6, 0.0, 0.2, 0.2, // RA 2.8
164  1.0, 0.8, 0.6, 1.0, 0.2, 0.2, // HR 3.8
165  1.0, 0.8, 0.6, 1.0, 0.2, 0.2; // RH 3.8
166 // TOT = 8.8 7.6 6.8 2.5 3.0 3.2
167  Ai.resize(10);
168  Ai=((Wij.array()*Pij.array()).matrix()*Qi).array()/(Wij*Qi).array();
169 }
compute confidence vector of radar variables
Definition: classifier.h:182
Given radar variables compute matrix of probability.
Definition: classifier.h:101

Referenzia Ai, e z.