Actual source code: petscsystypes.h
1: /* Portions of this code are under:
2: Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
3: */
5: #pragma once
7: #include <petscconf.h>
8: #include <petscconf_poison.h>
9: #include <petscfix.h>
10: #include <petscmacros.h>
11: #include <stddef.h>
13: /* SUBMANSEC = Sys */
15: #include <limits.h> // INT_MIN, INT_MAX, CHAR_BIT
17: #if defined(__clang__) || (PETSC_CPP_VERSION >= 17)
18: // clang allows both [[nodiscard]] and __attribute__((warn_unused_result)) on type
19: // definitions. GCC, however, does not, so check that we are using C++17 [[nodiscard]]
20: // instead of __attribute__((warn_unused_result))
21: #define PETSC_ERROR_CODE_NODISCARD PETSC_NODISCARD
22: #else
23: #define PETSC_ERROR_CODE_NODISCARD
24: #endif
26: #ifdef PETSC_CLANG_STATIC_ANALYZER
27: #undef PETSC_USE_STRICT_PETSCERRORCODE
28: #endif
30: #ifdef PETSC_USE_STRICT_PETSCERRORCODE
31: #define PETSC_ERROR_CODE_TYPEDEF typedef
32: #define PETSC_ERROR_CODE_ENUM_NAME PetscErrorCode
33: #else
34: #define PETSC_ERROR_CODE_TYPEDEF
35: #define PETSC_ERROR_CODE_ENUM_NAME
36: #endif
38: /*E
39: PetscErrorCode - Datatype used to return PETSc error codes.
41: Level: beginner
43: Notes:
44: Virtually all PETSc functions return an error code. It is the callers responsibility to check
45: the value of the returned error code after each PETSc call to determine if any errors
46: occurred. A set of convenience macros (e.g. `PetscCall()`, `PetscCallVoid()`) are provided
47: for this purpose. Failing to properly check for errors is not supported, as errors may leave
48: PETSc in an undetermined state.
50: One can retrieve the error string corresponding to a particular error code using
51: `PetscErrorMessage()`.
53: The user can also configure PETSc with the `--with-strict-petscerrorcode` option to enable
54: compiler warnings when the returned error codes are not captured and checked. Users are
55: *heavily* encouraged to opt-in to this option, as it will become enabled by default in a
56: future release.
58: Developer Notes:
60: These are the generic error codes. These error codes are used in many different places in the
61: PETSc source code. The C-string versions are at defined in `PetscErrorStrings[]` in
62: `src/sys/error/err.c`, while the Fortran versions are defined in
63: `src/sys/f90-mod/petscerror.h`. Any changes here must also be made in both locations.
65: .seealso: `PetscErrorMessage()`, `PetscCall()`, `SETERRQ()`
66: E*/
67: PETSC_ERROR_CODE_TYPEDEF enum PETSC_ERROR_CODE_NODISCARD {
68: PETSC_SUCCESS = 0,
69: PETSC_ERR_BOOLEAN_MACRO_FAILURE = 1, /* do not use */
71: PETSC_ERR_MIN_VALUE = 54, /* should always be one less then the smallest value */
73: PETSC_ERR_MEM = 55, /* unable to allocate requested memory */
74: PETSC_ERR_SUP = 56, /* no support for requested operation */
75: PETSC_ERR_SUP_SYS = 57, /* no support for requested operation on this computer system */
76: PETSC_ERR_ORDER = 58, /* operation done in wrong order */
77: PETSC_ERR_SIG = 59, /* signal received */
78: PETSC_ERR_FP = 72, /* floating point exception */
79: PETSC_ERR_COR = 74, /* corrupted PETSc object */
80: PETSC_ERR_LIB = 76, /* error in library called by PETSc */
81: PETSC_ERR_PLIB = 77, /* PETSc library generated inconsistent data */
82: PETSC_ERR_MEMC = 78, /* memory corruption */
83: PETSC_ERR_CONV_FAILED = 82, /* iterative method (KSP or SNES) failed */
84: PETSC_ERR_USER = 83, /* user has not provided needed function */
85: PETSC_ERR_SYS = 88, /* error in system call */
86: PETSC_ERR_POINTER = 70, /* pointer does not point to valid address */
87: PETSC_ERR_MPI_LIB_INCOMP = 87, /* MPI library at runtime is not compatible with MPI user compiled with */
89: PETSC_ERR_ARG_SIZ = 60, /* nonconforming object sizes used in operation */
90: PETSC_ERR_ARG_IDN = 61, /* two arguments not allowed to be the same */
91: PETSC_ERR_ARG_WRONG = 62, /* wrong argument (but object probably ok) */
92: PETSC_ERR_ARG_CORRUPT = 64, /* null or corrupted PETSc object as argument */
93: PETSC_ERR_ARG_OUTOFRANGE = 63, /* input argument, out of range */
94: PETSC_ERR_ARG_BADPTR = 68, /* invalid pointer argument */
95: PETSC_ERR_ARG_NOTSAMETYPE = 69, /* two args must be same object type */
96: PETSC_ERR_ARG_NOTSAMECOMM = 80, /* two args must be same communicators */
97: PETSC_ERR_ARG_WRONGSTATE = 73, /* object in argument is in wrong state, e.g. unassembled mat */
98: PETSC_ERR_ARG_TYPENOTSET = 89, /* the type of the object has not yet been set */
99: PETSC_ERR_ARG_INCOMP = 75, /* two arguments are incompatible */
100: PETSC_ERR_ARG_NULL = 85, /* argument is null that should not be */
101: PETSC_ERR_ARG_UNKNOWN_TYPE = 86, /* type name doesn't match any registered type */
103: PETSC_ERR_FILE_OPEN = 65, /* unable to open file */
104: PETSC_ERR_FILE_READ = 66, /* unable to read from file */
105: PETSC_ERR_FILE_WRITE = 67, /* unable to write to file */
106: PETSC_ERR_FILE_UNEXPECTED = 79, /* unexpected data in file */
108: PETSC_ERR_MAT_LU_ZRPVT = 71, /* detected a zero pivot during LU factorization */
109: PETSC_ERR_MAT_CH_ZRPVT = 81, /* detected a zero pivot during Cholesky factorization */
111: PETSC_ERR_INT_OVERFLOW = 84,
112: PETSC_ERR_FLOP_COUNT = 90,
113: PETSC_ERR_NOT_CONVERGED = 91, /* solver did not converge */
114: PETSC_ERR_MISSING_FACTOR = 92, /* MatGetFactor() failed */
115: PETSC_ERR_OPT_OVERWRITE = 93, /* attempted to over write options which should not be changed */
116: PETSC_ERR_WRONG_MPI_SIZE = 94, /* example/application run with number of MPI ranks it does not support */
117: PETSC_ERR_USER_INPUT = 95, /* missing or incorrect user input */
118: PETSC_ERR_GPU_RESOURCE = 96, /* unable to load a GPU resource, for example cuBLAS */
119: PETSC_ERR_GPU = 97, /* An error from a GPU call, this may be due to lack of resources on the GPU or a true error in the call */
120: PETSC_ERR_MPI = 98, /* general MPI error */
121: PETSC_ERR_RETURN = 99, /* PetscError() incorrectly returned an error code of 0 */
122: PETSC_ERR_MEM_LEAK = 100, /* memory alloc/free imbalance */
123: PETSC_ERR_MAX_VALUE = 101, /* this is always the one more than the largest error code */
125: /*
126: do not use, exist purely to make the enum bounds equal that of a regular int (so conversion
127: to int in main() is not undefined behavior)
128: */
129: PETSC_ERR_MIN_SIGNED_BOUND_DO_NOT_USE = INT_MIN,
130: PETSC_ERR_MAX_SIGNED_BOUND_DO_NOT_USE = INT_MAX
131: } PETSC_ERROR_CODE_ENUM_NAME;
133: #ifndef PETSC_USE_STRICT_PETSCERRORCODE
134: typedef int PetscErrorCode;
136: /*
137: Needed so that C++ lambdas can deduce the return type as PetscErrorCode from
138: PetscFunctionReturn(PETSC_SUCCESS). Otherwise we get
140: error: return type '(unnamed enum at include/petscsystypes.h:50:1)' must match previous
141: return type 'int' when lambda expression has unspecified explicit return type
142: PetscFunctionReturn(PETSC_SUCCESS);
143: ^
144: */
145: #define PETSC_SUCCESS ((PetscErrorCode)0)
146: #endif
148: #undef PETSC_ERROR_CODE_NODISCARD
149: #undef PETSC_ERROR_CODE_TYPEDEF
150: #undef PETSC_ERROR_CODE_ENUM_NAME
152: /*MC
153: PetscClassId - A unique id used to identify each PETSc class.
155: Level: developer
157: Note:
158: Use `PetscClassIdRegister()` to obtain a new value for a new class being created. Usually
159: XXXInitializePackage() calls it for each class it defines.
161: Developer Note:
162: Internal integer stored in the `_p_PetscObject` data structure. These are all computed by an offset from the lowest one, `PETSC_SMALLEST_CLASSID`.
164: .seealso: `PetscClassIdRegister()`, `PetscLogEventRegister()`, `PetscHeaderCreate()`
165: M*/
166: typedef int PetscClassId;
168: /*MC
169: PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.
171: Level: intermediate
173: Notes:
174: This is always a 32-bit integer, sometimes it is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
175: standard C/Fortran integers are 32-bit then this is NOT the same as `PetscInt`; it remains 32-bit.
177: `PetscMPIIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscMPIInt`, if not it
178: generates a `PETSC_ERR_ARG_OUTOFRANGE` error.
180: .seealso: `PetscBLASInt`, `PetscInt`, `PetscMPIIntCast()`
181: M*/
182: typedef int PetscMPIInt;
184: /* Limit MPI to 32-bits */
185: enum {
186: PETSC_MPI_INT_MIN = INT_MIN,
187: PETSC_MPI_INT_MAX = INT_MAX
188: };
190: /*MC
191: PetscSizeT - datatype used to represent sizes in memory (like `size_t`)
193: Level: intermediate
195: Notes:
196: This is equivalent to `size_t`, but defined for consistency with Fortran, which lacks a native equivalent of `size_t`.
198: .seealso: `PetscInt`, `PetscInt64`, `PetscCount`
199: M*/
200: typedef size_t PetscSizeT;
202: /*MC
203: PetscCount - signed datatype used to represent counts
205: Level: intermediate
207: Notes:
208: This is equivalent to `ptrdiff_t`, but defined for consistency with Fortran, which lacks a native equivalent of `ptrdiff_t`.
210: Use `PetscCount_FMT` to format with `PetscPrintf()`, `printf()`, and related functions.
212: .seealso: `PetscInt`, `PetscInt64`, `PetscSizeT`
213: M*/
214: typedef ptrdiff_t PetscCount;
215: #define PetscCount_FMT "td"
217: /*MC
218: PetscEnum - datatype used to pass enum types within PETSc functions.
220: Level: intermediate
222: .seealso: `PetscOptionsGetEnum()`, `PetscOptionsEnum()`, `PetscBagRegisterEnum()`
223: M*/
224: typedef enum {
225: ENUM_DUMMY
226: } PetscEnum;
228: typedef short PetscShort;
229: typedef char PetscChar;
230: typedef float PetscFloat;
232: /*MC
233: PetscInt - PETSc type that represents an integer, used primarily to
234: represent size of arrays and indexing into arrays. Its size can be configured with the option `--with-64-bit-indices` to be either 32-bit (default) or 64-bit.
236: Level: beginner
238: Notes:
239: For MPI calls that require datatypes, use `MPIU_INT` as the datatype for `PetscInt`. It will automatically work correctly regardless of the size of `PetscInt`.
241: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscIntCast()`
242: M*/
244: #if defined(PETSC_HAVE_STDINT_H)
245: #include <stdint.h>
246: #endif
247: #if defined(PETSC_HAVE_INTTYPES_H)
250: #endif
251: #include <inttypes.h>
252: #if !defined(PRId64)
253: #define PRId64 "ld"
254: #endif
255: #endif
257: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && defined(PETSC_HAVE_MPI_INT64_T) /* MPI_INT64_T is not guaranteed to be a macro */
258: typedef int64_t PetscInt64;
260: #define PETSC_INT64_MIN INT64_MIN
261: #define PETSC_INT64_MAX INT64_MAX
263: #elif (PETSC_SIZEOF_LONG_LONG == 8)
264: typedef long long PetscInt64;
266: #define PETSC_INT64_MIN LLONG_MIN
267: #define PETSC_INT64_MAX LLONG_MAX
269: #elif defined(PETSC_HAVE___INT64)
270: typedef __int64 PetscInt64;
272: #define PETSC_INT64_MIN INT64_MIN
273: #define PETSC_INT64_MAX INT64_MAX
275: #else
276: #error "cannot determine PetscInt64 type"
277: #endif
279: typedef int32_t PetscInt32;
280: #define PETSC_INT32_MIN INT32_MIN
281: #define PETSC_INT32_MAX INT32_MAX
283: #if defined(PETSC_USE_64BIT_INDICES)
284: typedef PetscInt64 PetscInt;
286: #define PETSC_INT_MIN PETSC_INT64_MIN
287: #define PETSC_INT_MAX PETSC_INT64_MAX
288: #define PetscInt_FMT PetscInt64_FMT
289: #else
290: typedef int PetscInt;
292: enum {
293: PETSC_INT_MIN = INT_MIN,
294: PETSC_INT_MAX = INT_MAX
295: };
297: #define PetscInt_FMT "d"
298: #endif
300: #define PETSC_MIN_INT PETSC_INT_MIN
301: #define PETSC_MAX_INT PETSC_INT_MAX
302: #define PETSC_MAX_UINT16 65535
304: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && defined(PETSC_HAVE_MPI_INT64_T) /* MPI_INT64_T is not guaranteed to be a macro */
305: #define MPIU_INT64 MPI_INT64_T
306: #define PetscInt64_FMT PRId64
307: #elif (PETSC_SIZEOF_LONG_LONG == 8)
308: #define MPIU_INT64 MPI_LONG_LONG_INT
309: #define PetscInt64_FMT "lld"
310: #elif defined(PETSC_HAVE___INT64)
311: #define MPIU_INT64 MPI_INT64_T
312: #define PetscInt64_FMT "ld"
313: #else
314: #error "cannot determine PetscInt64 type"
315: #endif
317: #define MPIU_INT32 MPI_INT32_T
318: #define PetscInt32_FMT PRId32
320: /*MC
321: PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.
323: Level: intermediate
325: Notes:
326: Usually this is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
327: standard C/Fortran integers are 32-bit then this may not be the same as `PetscInt`,
328: except on some BLAS/LAPACK implementations that support 64-bit integers see the notes below.
330: `PetscErrorCode` `PetscBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscBLASInt`, if not it
331: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
333: Installation Notes:
334: ./configure automatically determines the size of the integers used by BLAS/LAPACK except when `--with-batch` is used
335: in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64-bit and if so pass the flag `--known-64-bit-blas-indices`
337: MATLAB ships with BLAS and LAPACK that use 64-bit integers, for example if you run ./configure with, the option
338: `--with-blaslapack-lib`=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]
340: MKL ships with both 32 and 64-bit integer versions of the BLAS and LAPACK. If you pass the flag `-with-64-bit-blas-indices` PETSc will link
341: against the 64-bit version, otherwise it uses the 32-bit version
343: OpenBLAS can be built to use 64-bit integers. The ./configure options `--download-openblas` `-with-64-bit-blas-indices` will build a 64-bit integer version
345: External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64-bit integers to BLAS/LAPACK so cannot
346: be used with PETSc when PETSc links against 64-bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
347: these external libraries while using 64-bit integer BLAS/LAPACK.
349: .seealso: `PetscMPIInt`, `PetscInt`, `PetscBLASIntCast()`
350: M*/
351: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
352: typedef PetscInt64 PetscBLASInt;
354: #define PETSC_BLAS_INT_MIN PETSC_INT64_MIN
355: #define PETSC_BLAS_INT_MAX PETSC_INT64_MAX
356: #define PetscBLASInt_FMT PetscInt64_FMT
357: #else
358: typedef int PetscBLASInt;
360: enum {
361: PETSC_BLAS_INT_MIN = INT_MIN,
362: PETSC_BLAS_INT_MAX = INT_MAX
363: };
365: #define PetscBLASInt_FMT "d"
366: #endif
368: /*MC
369: PetscCuBLASInt - datatype used to represent 'int' parameters to cuBLAS/cuSOLVER functions.
371: Level: intermediate
373: Notes:
374: As of this writing `PetscCuBLASInt` is always the system `int`.
376: `PetscErrorCode` `PetscCuBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscCuBLASInt`, if not it
377: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
379: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscCuBLASIntCast()`
380: M*/
381: typedef int PetscCuBLASInt;
383: enum {
384: PETSC_CUBLAS_INT_MIN = INT_MIN,
385: PETSC_CUBLAS_INT_MAX = INT_MAX
386: };
388: /*MC
389: PetscHipBLASInt - datatype used to represent 'int' parameters to hipBLAS/hipSOLVER functions.
391: Level: intermediate
393: Notes:
394: As of this writing `PetscHipBLASInt` is always the system `int`.
396: `PetscErrorCode` `PetscHipBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscHipBLASInt`, if not it
397: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
399: .seealso: PetscBLASInt, PetscMPIInt, PetscInt, PetscHipBLASIntCast()
400: M*/
401: typedef int PetscHipBLASInt;
403: enum {
404: PETSC_HIPBLAS_INT_MIN = INT_MIN,
405: PETSC_HIPBLAS_INT_MAX = INT_MAX
406: };
408: /*E
409: PetscBool - Logical variable. Actually an enum in C and a logical in Fortran.
411: Level: beginner
413: Developer Note:
414: Why have `PetscBool`, why not use bool in C? The problem is that K and R C, C99 and C++ all have different mechanisms for
415: boolean values. It is not easy to have a simple macro that that will work properly in all circumstances with all three mechanisms.
417: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PetscBool3`
418: E*/
419: typedef enum {
420: PETSC_FALSE,
421: PETSC_TRUE
422: } PetscBool;
423: PETSC_EXTERN const char *const PetscBools[];
425: /*E
426: PetscBool3 - Ternary logical variable. Actually an enum in C and a 4 byte integer in Fortran.
428: Level: beginner
430: Note:
431: Should not be used with the if (flg) or if (!flg) syntax.
433: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PETSC_BOOL3_TRUE`, `PETSC_BOOL3_FALSE`, `PETSC_BOOL3_UNKNOWN`
434: E*/
435: typedef enum {
436: PETSC_BOOL3_FALSE,
437: PETSC_BOOL3_TRUE,
438: PETSC_BOOL3_UNKNOWN = -1
439: } PetscBool3;
441: #define PetscBool3ToBool(a) ((a) == PETSC_BOOL3_TRUE ? PETSC_TRUE : PETSC_FALSE)
442: #define PetscBoolToBool3(a) ((a) == PETSC_TRUE ? PETSC_BOOL3_TRUE : PETSC_BOOL3_FALSE)
444: /*MC
445: PetscReal - PETSc type that represents a real number version of `PetscScalar`
447: Level: beginner
449: Notes:
450: For MPI calls that require datatypes, use `MPIU_REAL` as the datatype for `PetscReal` and `MPIU_SUM`, `MPIU_MAX`, etc. for operations.
451: They will automatically work correctly regardless of the size of `PetscReal`.
453: See `PetscScalar` for details on how to ./configure the size of `PetscReal`.
455: .seealso: `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`
456: M*/
458: #if defined(PETSC_USE_REAL_SINGLE)
459: typedef float PetscReal;
460: #elif defined(PETSC_USE_REAL_DOUBLE)
461: typedef double PetscReal;
462: #elif defined(PETSC_USE_REAL___FLOAT128)
463: #if defined(__cplusplus)
464: extern "C" {
465: #endif
466: #include <quadmath.h>
467: #if defined(__cplusplus)
468: }
469: #endif
470: typedef __float128 PetscReal;
471: #elif defined(PETSC_USE_REAL___FP16)
472: typedef __fp16 PetscReal;
473: #endif /* PETSC_USE_REAL_* */
475: /*MC
476: PetscComplex - PETSc type that represents a complex number with precision matching that of `PetscReal`.
478: Synopsis:
479: #include <petscsys.h>
480: PetscComplex number = 1. + 2.*PETSC_i;
482: Level: beginner
484: Notes:
485: For MPI calls that require datatypes, use `MPIU_COMPLEX` as the datatype for `PetscComplex` and `MPIU_SUM` etc for operations.
486: They will automatically work correctly regardless of the size of `PetscComplex`.
488: See `PetscScalar` for details on how to ./configure the size of `PetscReal`
490: Complex numbers are automatically available if PETSc was able to find a working complex implementation
492: PETSc has a 'fix' for complex numbers to support expressions such as `std::complex<PetscReal>` + `PetscInt`, which are not supported by the standard
493: C++ library, but are convenient for petsc users. If the C++ compiler is able to compile code in `petsccxxcomplexfix.h` (This is checked by
494: configure), we include `petsccxxcomplexfix.h` to provide this convenience.
496: If the fix causes conflicts, or one really does not want this fix for a particular C++ file, one can define `PETSC_SKIP_CXX_COMPLEX_FIX`
497: at the beginning of the C++ file to skip the fix.
499: .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PETSC_i`
500: M*/
501: #if !defined(PETSC_SKIP_COMPLEX)
502: #if defined(PETSC_CLANGUAGE_CXX)
503: #if !defined(PETSC_USE_REAL___FP16) && !defined(PETSC_USE_REAL___FLOAT128)
504: #if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX) /* enable complex for library code */
505: #define PETSC_HAVE_COMPLEX 1
506: #elif !defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
507: #define PETSC_HAVE_COMPLEX 1
508: #endif
509: #elif defined(PETSC_USE_REAL___FLOAT128) && defined(PETSC_HAVE_C99_COMPLEX)
510: #define PETSC_HAVE_COMPLEX 1
511: #endif
512: #else /* !PETSC_CLANGUAGE_CXX */
513: #if !defined(PETSC_USE_REAL___FP16)
515: #define PETSC_HAVE_COMPLEX 1
516: #elif defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
517: #define PETSC_HAVE_COMPLEX 1
518: #endif
519: #endif
520: #endif /* PETSC_CLANGUAGE_CXX */
521: #endif /* !PETSC_SKIP_COMPLEX */
523: #if defined(PETSC_HAVE_COMPLEX)
524: #if defined(__cplusplus) /* C++ complex support */
525: /* Locate a C++ complex template library */
526: #if defined(PETSC_DESIRE_KOKKOS_COMPLEX) /* Defined in petscvec_kokkos.hpp for *.kokkos.cxx files */
527: #define petsccomplexlib Kokkos
528: #include <Kokkos_Complex.hpp>
529: #elif defined(__CUDACC__) || defined(__HIPCC__)
530: #define petsccomplexlib thrust
531: #include <thrust/complex.h>
532: #elif defined(PETSC_USE_REAL___FLOAT128)
533: #include <complex.h>
534: #else
535: #define petsccomplexlib std
536: #include <complex>
537: #endif
539: /* Define PetscComplex based on the precision */
540: #if defined(PETSC_USE_REAL_SINGLE)
541: typedef petsccomplexlib::complex<float> PetscComplex;
542: #elif defined(PETSC_USE_REAL_DOUBLE)
543: typedef petsccomplexlib::complex<double> PetscComplex;
544: #elif defined(PETSC_USE_REAL___FLOAT128)
545: typedef __complex128 PetscComplex;
546: #endif
548: /* Include a PETSc C++ complex 'fix'. Check PetscComplex manual page for details */
549: #if defined(PETSC_HAVE_CXX_COMPLEX_FIX) && !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
550: #include <petsccxxcomplexfix.h>
551: #endif
552: #else /* c99 complex support */
553: #include <complex.h>
554: #if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
555: typedef float _Complex PetscComplex;
556: #elif defined(PETSC_USE_REAL_DOUBLE)
557: typedef double _Complex PetscComplex;
558: #elif defined(PETSC_USE_REAL___FLOAT128)
559: typedef __complex128 PetscComplex;
560: #endif /* PETSC_USE_REAL_* */
561: #endif /* !__cplusplus */
562: #endif /* PETSC_HAVE_COMPLEX */
564: /*MC
565: PetscScalar - PETSc type that represents either a double precision real number, a double precision
566: complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
567: with `--with-scalar-type`=real,complex `--with-precision`=single,double,__float128,__fp16
569: Level: beginner
571: Note:
572: For MPI calls that require datatypes, use `MPIU_SCALAR` as the datatype for `PetscScalar` and `MPIU_SUM`, etc for operations. They will automatically work correctly regardless of the size of `PetscScalar`.
574: .seealso: `PetscReal`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscRealPart()`, `PetscImaginaryPart()`
575: M*/
577: #if defined(PETSC_USE_COMPLEX) && defined(PETSC_HAVE_COMPLEX)
578: typedef PetscComplex PetscScalar;
579: #else /* PETSC_USE_COMPLEX */
580: typedef PetscReal PetscScalar;
581: #endif /* PETSC_USE_COMPLEX */
583: /*E
584: PetscCopyMode - Determines how an array or `PetscObject` passed to certain functions is copied or retained by the aggregate `PetscObject`
586: Level: beginner
588: Values for array input:
589: + `PETSC_COPY_VALUES` - the array values are copied into new space, the user is free to reuse or delete the passed in array
590: . `PETSC_OWN_POINTER` - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
591: delete the array. The array MUST have been obtained with `PetscMalloc()`. Hence this mode cannot be used in Fortran.
592: - `PETSC_USE_POINTER` - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
593: the array but the user must delete the array after the object is destroyed.
595: Values for PetscObject:
596: + `PETSC_COPY_VALUES` - the input `PetscObject` is cloned into the aggregate `PetscObject`; the user is free to reuse/modify the input `PetscObject` without side effects.
597: . `PETSC_OWN_POINTER` - the input `PetscObject` is referenced by pointer (with reference count), thus should not be modified by the user.
598: increases its reference count).
599: - `PETSC_USE_POINTER` - invalid for `PetscObject` inputs.
601: .seealso: `PetscInsertMode`
602: E*/
603: typedef enum {
604: PETSC_COPY_VALUES,
605: PETSC_OWN_POINTER,
606: PETSC_USE_POINTER
607: } PetscCopyMode;
608: PETSC_EXTERN const char *const PetscCopyModes[];
610: /*MC
611: PETSC_FALSE - False value of `PetscBool`
613: Level: beginner
615: Note:
616: Zero integer
618: .seealso: `PetscBool`, `PetscBool3`, `PETSC_TRUE`
619: M*/
621: /*MC
622: PETSC_TRUE - True value of `PetscBool`
624: Level: beginner
626: Note:
627: Nonzero integer
629: .seealso: `PetscBool`, `PetscBool3`, `PETSC_FALSE`
630: M*/
632: /*MC
633: PetscLogDouble - Used for logging times
635: Level: developer
637: Note:
638: Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.
640: .seealso: `PetscBool`, `PetscDataType`
641: M*/
642: typedef double PetscLogDouble;
644: /*E
645: PetscDataType - Used for handling different basic data types.
647: Level: beginner
649: Notes:
650: Use of this should be avoided if one can directly use `MPI_Datatype` instead.
652: `PETSC_INT` is the datatype for a `PetscInt`, regardless of whether it is 4 or 8 bytes.
653: `PETSC_REAL`, `PETSC_COMPLEX` and `PETSC_SCALAR` are the datatypes for `PetscReal`, `PetscComplex` and `PetscScalar`, regardless of their sizes.
655: Developer Notes:
656: It would be nice if we could always just use MPI Datatypes, why can we not?
658: If you change any values in `PetscDatatype` make sure you update their usage in
659: share/petsc/matlab/PetscBagRead.m and share/petsc/matlab/@PetscOpenSocket/read/write.m
661: TODO:
662: Remove use of improper `PETSC_ENUM`
664: .seealso: `PetscBinaryRead()`, `PetscBinaryWrite()`, `PetscDataTypeToMPIDataType()`,
665: `PetscDataTypeGetSize()`
666: E*/
667: typedef enum {
668: PETSC_DATATYPE_UNKNOWN = 0,
669: PETSC_DOUBLE = 1,
670: PETSC_COMPLEX = 2,
671: PETSC_LONG = 3,
672: PETSC_SHORT = 4,
673: PETSC_FLOAT = 5,
674: PETSC_CHAR = 6,
675: PETSC_BIT_LOGICAL = 7,
676: PETSC_ENUM = 8,
677: PETSC_BOOL = 9,
678: PETSC___FLOAT128 = 10,
679: PETSC_OBJECT = 11,
680: PETSC_FUNCTION = 12,
681: PETSC_STRING = 13,
682: PETSC___FP16 = 14,
683: PETSC_STRUCT = 15,
684: PETSC_INT = 16,
685: PETSC_INT64 = 17,
686: PETSC_COUNT = 18,
687: PETSC_INT32 = 19,
688: } PetscDataType;
689: PETSC_EXTERN const char *const PetscDataTypes[];
691: #if defined(PETSC_USE_REAL_SINGLE)
692: #define PETSC_REAL PETSC_FLOAT
693: #elif defined(PETSC_USE_REAL_DOUBLE)
694: #define PETSC_REAL PETSC_DOUBLE
695: #elif defined(PETSC_USE_REAL___FLOAT128)
696: #define PETSC_REAL PETSC___FLOAT128
697: #elif defined(PETSC_USE_REAL___FP16)
698: #define PETSC_REAL PETSC___FP16
699: #else
700: #define PETSC_REAL PETSC_DOUBLE
701: #endif
703: #if defined(PETSC_USE_COMPLEX)
704: #define PETSC_SCALAR PETSC_COMPLEX
705: #else
706: #define PETSC_SCALAR PETSC_REAL
707: #endif
709: #define PETSC_FORTRANADDR PETSC_LONG
711: /*S
712: PetscToken - 'Token' used for managing tokenizing strings
714: Level: intermediate
716: .seealso: `PetscTokenCreate()`, `PetscTokenFind()`, `PetscTokenDestroy()`
717: S*/
718: typedef struct _p_PetscToken *PetscToken;
720: /*S
721: PetscObject - any PETSc object, `PetscViewer`, `Mat`, `Vec`, `KSP` etc
723: Level: beginner
725: Notes:
726: This is the base class from which all PETSc objects are derived from.
728: In certain situations one can cast an object, for example a `Vec`, to a `PetscObject` with (`PetscObject`)vec
730: .seealso: `PetscObjectDestroy()`, `PetscObjectView()`, `PetscObjectGetName()`, `PetscObjectSetName()`, `PetscObjectReference()`, `PetscObjectDereference()`
731: S*/
732: typedef struct _p_PetscObject *PetscObject;
734: /*MC
735: PetscObjectId - unique integer Id for a `PetscObject`
737: Level: developer
739: Note:
740: Unlike pointer values, object ids are never reused so one may save a `PetscObjectId` and compare it to one obtained later from a `PetscObject` to determine
741: if the objects are the same. Never compare two object pointer values.
743: .seealso: `PetscObjectState`, `PetscObjectGetId()`
744: M*/
745: typedef PetscInt64 PetscObjectId;
747: /*MC
748: PetscObjectState - integer state for a `PetscObject`
750: Level: developer
752: Notes:
753: Object state is always-increasing and (for objects that track state) can be used to determine if an object has
754: changed since the last time you interacted with it. It is 64-bit so that it will not overflow for a very long time.
756: .seealso: `PetscObjectId`, `PetscObjectStateGet()`, `PetscObjectStateIncrease()`, `PetscObjectStateSet()`
757: M*/
758: typedef PetscInt64 PetscObjectState;
760: /*S
761: PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
762: by string name
764: Level: advanced
766: .seealso: `PetscFunctionListAdd()`, `PetscFunctionListDestroy()`
767: S*/
768: typedef struct _n_PetscFunctionList *PetscFunctionList;
770: /*E
771: PetscFileMode - Access mode for a file.
773: Values:
774: + `FILE_MODE_UNDEFINED` - initial invalid value
775: . `FILE_MODE_READ` - open a file at its beginning for reading
776: . `FILE_MODE_WRITE` - open a file at its beginning for writing (will create if the file does not exist)
777: . `FILE_MODE_APPEND` - open a file at end for writing
778: . `FILE_MODE_UPDATE` - open a file for updating, meaning for reading and writing
779: - `FILE_MODE_APPEND_UPDATE` - open a file for updating, meaning for reading and writing, at the end
781: Level: beginner
783: .seealso: `PetscViewerFileSetMode()`
784: E*/
785: typedef enum {
786: FILE_MODE_UNDEFINED = -1,
787: FILE_MODE_READ = 0,
788: FILE_MODE_WRITE,
789: FILE_MODE_APPEND,
790: FILE_MODE_UPDATE,
791: FILE_MODE_APPEND_UPDATE
792: } PetscFileMode;
793: PETSC_EXTERN const char *const PetscFileModes[];
795: typedef void *PetscDLHandle;
796: typedef enum {
797: PETSC_DL_DECIDE = 0,
798: PETSC_DL_NOW = 1,
799: PETSC_DL_LOCAL = 2
800: } PetscDLMode;
802: /*S
803: PetscObjectList - Linked list of PETSc objects, each accessible by string name
805: Level: developer
807: Note:
808: Used by `PetscObjectCompose()` and `PetscObjectQuery()`
810: .seealso: `PetscObjectListAdd()`, `PetscObjectListDestroy()`, `PetscObjectListFind()`, `PetscObjectCompose()`, `PetscObjectQuery()`, `PetscFunctionList`
811: S*/
812: typedef struct _n_PetscObjectList *PetscObjectList;
814: /*S
815: PetscDLLibrary - Linked list of dynamic libraries to search for functions
817: Level: developer
819: .seealso: `PetscDLLibraryOpen()`
820: S*/
821: typedef struct _n_PetscDLLibrary *PetscDLLibrary;
823: /*S
824: PetscContainer - Simple PETSc object that contains a pointer to any required data
826: Level: advanced
828: Note:
829: This is useful to attach arbitrary data to a `PetscObject` with `PetscObjectCompose()` and `PetscObjectQuery()`
831: .seealso: `PetscObject`, `PetscContainerCreate()`, `PetscObjectCompose()`, `PetscObjectQuery()`
832: S*/
833: typedef struct _p_PetscContainer *PetscContainer;
835: /*S
836: PetscRandom - Abstract PETSc object that manages generating random numbers
838: Level: intermediate
840: .seealso: `PetscRandomCreate()`, `PetscRandomGetValue()`, `PetscRandomType`
841: S*/
842: typedef struct _p_PetscRandom *PetscRandom;
844: /*
845: In binary files variables are stored using the following lengths,
846: regardless of how they are stored in memory on any one particular
847: machine. Use these rather then sizeof() in computing sizes for
848: PetscBinarySeek().
849: */
850: #define PETSC_BINARY_INT_SIZE (32 / 8)
851: #define PETSC_BINARY_FLOAT_SIZE (32 / 8)
852: #define PETSC_BINARY_CHAR_SIZE (8 / 8)
853: #define PETSC_BINARY_SHORT_SIZE (16 / 8)
854: #define PETSC_BINARY_DOUBLE_SIZE (64 / 8)
855: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)
857: /*E
858: PetscBinarySeekType - argument to `PetscBinarySeek()`
860: Values:
861: + `PETSC_BINARY_SEEK_SET` - offset is an absolute location in the file
862: . `PETSC_BINARY_SEEK_CUR` - offset is an offset from the current location of the file pointer
863: - `PETSC_BINARY_SEEK_END` - offset is an offset from the end of the file
865: Level: advanced
867: .seealso: `PetscBinarySeek()`, `PetscBinarySynchronizedSeek()`
868: E*/
869: typedef enum {
870: PETSC_BINARY_SEEK_SET = 0,
871: PETSC_BINARY_SEEK_CUR = 1,
872: PETSC_BINARY_SEEK_END = 2
873: } PetscBinarySeekType;
875: /*E
876: PetscBuildTwoSidedType - algorithm for setting up two-sided communication for use with `PetscSF`
878: Values:
879: + `PETSC_BUILDTWOSIDED_ALLREDUCE` - classical algorithm using an `MPI_Allreduce()` with
880: a buffer of length equal to the communicator size. Not memory-scalable due to
881: the large reduction size. Requires only an MPI-1 implementation.
882: . `PETSC_BUILDTWOSIDED_IBARRIER` - nonblocking algorithm based on `MPI_Issend()` and `MPI_Ibarrier()`.
883: Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires an MPI-3 implementation.
884: - `PETSC_BUILDTWOSIDED_REDSCATTER` - similar to above, but use more optimized function
885: that only communicates the part of the reduction that is necessary. Requires an MPI-2 implementation.
887: Level: developer
889: .seealso: `PetscCommBuildTwoSided()`, `PetscCommBuildTwoSidedSetType()`, `PetscCommBuildTwoSidedGetType()`
890: E*/
891: typedef enum {
892: PETSC_BUILDTWOSIDED_NOTSET = -1,
893: PETSC_BUILDTWOSIDED_ALLREDUCE = 0,
894: PETSC_BUILDTWOSIDED_IBARRIER = 1,
895: PETSC_BUILDTWOSIDED_REDSCATTER = 2
896: /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
897: } PetscBuildTwoSidedType;
898: PETSC_EXTERN const char *const PetscBuildTwoSidedTypes[];
900: /* NOTE: If you change this, you must also change the values in src/vec/f90-mod/petscvec.h */
901: /*E
902: InsertMode - How the entries are combined with the current values in the vectors or matrices
904: Values:
905: + `NOT_SET_VALUES` - do not actually use the values
906: . `INSERT_VALUES` - replace the current values with the provided values, unless the index is marked as constrained by the `PetscSection`
907: . `ADD_VALUES` - add the values to the current values, unless the index is marked as constrained by the `PetscSection`
908: . `MAX_VALUES` - use the maximum of each current value and provided value
909: . `MIN_VALUES` - use the minimum of each current value and provided value
910: . `INSERT_ALL_VALUES` - insert, even if indices that are not marked as constrained by the `PetscSection`
911: . `ADD_ALL_VALUES` - add, even if indices that are not marked as constrained by the `PetscSection`
912: . `INSERT_BC_VALUES` - insert, but ignore indices that are not marked as constrained by the `PetscSection`
913: - `ADD_BC_VALUES` - add, but ignore indices that are not marked as constrained by the `PetscSection`
915: Level: beginner
917: Note:
918: The `PetscSection` that determines the effects of the `InsertMode` values can be obtained by the `Vec` object with `VecGetDM()`
919: and `DMGetLocalSection()`.
921: Not all options are supported for all operations or PETSc object types.
923: .seealso: `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
924: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`,
925: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`
926: E*/
927: typedef enum {
928: NOT_SET_VALUES,
929: INSERT_VALUES,
930: ADD_VALUES,
931: MAX_VALUES,
932: MIN_VALUES,
933: INSERT_ALL_VALUES,
934: ADD_ALL_VALUES,
935: INSERT_BC_VALUES,
936: ADD_BC_VALUES
937: } InsertMode;
939: /*MC
940: INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value
942: Level: beginner
944: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
945: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `ADD_VALUES`,
946: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
947: M*/
949: /*MC
950: ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
951: value into that location
953: Level: beginner
955: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
956: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `INSERT_VALUES`,
957: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
958: M*/
960: /*MC
961: MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location
963: Level: beginner
965: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
966: M*/
968: /*MC
969: MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location
971: Level: beginner
973: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
974: M*/
976: /*S
977: PetscSubcomm - A decomposition of an MPI communicator into subcommunicators
979: Values:
980: + `PETSC_SUBCOMM_GENERAL` - similar to `MPI_Comm_split()` each process sets the new communicator (color) they will belong to and the order within that communicator
981: . `PETSC_SUBCOMM_CONTIGUOUS` - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
982: - `PETSC_SUBCOMM_INTERLACED` - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator
984: Sample Usage:
985: .vb
986: PetscSubcommCreate()
987: PetscSubcommSetNumber()
988: PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
989: ccomm = PetscSubcommChild()
990: PetscSubcommDestroy()
991: .ve
993: Example:
994: Consider a communicator with six processes split into 3 subcommunicators.
995: .vb
996: PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1 the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
997: PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5
998: .ve
1000: Level: advanced
1002: Note:
1003: After a call to `PetscSubcommSetType()`, `PetscSubcommSetTypeGeneral()`, or `PetscSubcommSetFromOptions()` one may call
1004: .vb
1005: PetscSubcommChild() returns the associated subcommunicator on this process
1006: PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank
1007: .ve
1009: Developer Note:
1010: This is used in objects such as `PCREDUNDANT` to manage the subcommunicators on which the redundant computations
1011: are performed.
1013: .seealso: `PetscSubcommCreate()`, `PetscSubcommSetNumber()`, `PetscSubcommSetType()`, `PetscSubcommView()`, `PetscSubcommSetFromOptions()`
1014: S*/
1015: typedef struct _n_PetscSubcomm *PetscSubcomm;
1016: typedef enum {
1017: PETSC_SUBCOMM_GENERAL = 0,
1018: PETSC_SUBCOMM_CONTIGUOUS = 1,
1019: PETSC_SUBCOMM_INTERLACED = 2
1020: } PetscSubcommType;
1021: PETSC_EXTERN const char *const PetscSubcommTypes[];
1023: /*S
1024: PetscHeap - A simple class for managing heaps
1026: Level: intermediate
1028: .seealso: `PetscHeapCreate()`, `PetscHeapAdd()`, `PetscHeapPop()`, `PetscHeapPeek()`, `PetscHeapStash()`, `PetscHeapUnstash()`, `PetscHeapView()`, `PetscHeapDestroy()`
1029: S*/
1030: typedef struct _PetscHeap *PetscHeap;
1032: typedef struct _n_PetscShmComm *PetscShmComm;
1033: typedef struct _n_PetscOmpCtrl *PetscOmpCtrl;
1035: /*S
1036: PetscSegBuffer - a segmented extendable buffer
1038: Level: developer
1040: .seealso: `PetscSegBufferCreate()`, `PetscSegBufferGet()`, `PetscSegBufferExtract()`, `PetscSegBufferDestroy()`
1041: S*/
1042: typedef struct _n_PetscSegBuffer *PetscSegBuffer;
1044: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;
1046: /*S
1047: PetscBT - PETSc bitarrays, efficient storage of arrays of boolean values
1049: Level: advanced
1051: Notes:
1052: The following routines do not have their own manual pages
1054: .vb
1055: PetscBTCreate(m,&bt) - creates a bit array with enough room to hold m values
1056: PetscBTDestroy(&bt) - destroys the bit array
1057: PetscBTMemzero(m,bt) - zeros the entire bit array (sets all values to false)
1058: PetscBTSet(bt,index) - sets a particular entry as true
1059: PetscBTClear(bt,index) - sets a particular entry as false
1060: PetscBTLookup(bt,index) - returns the value
1061: PetscBTLookupSet(bt,index) - returns the value and then sets it true
1062: PetscBTLookupClear(bt,index) - returns the value and then sets it false
1063: PetscBTLength(m) - returns number of bytes in array with m bits
1064: PetscBTView(m,bt,viewer) - prints all the entries in a bit array
1065: .ve
1067: PETSc does not check error flags on `PetscBTLookup()`, `PetcBTLookupSet()`, `PetscBTLength()` because error checking
1068: would cost hundreds more cycles then the operation.
1070: S*/
1071: typedef char *PetscBT;
1073: /* The number of bits in a byte */
1074: #define PETSC_BITS_PER_BYTE CHAR_BIT