PynamoDB Documentation
Release 6.0.2

Jharrod LaFon

Apr 17, 2025

1 Features

2.1 Usage o o e e e
22 BasicTutorial
23 IndexQueries.
24 BatchOperations
2.5 Update Operations

2 Topics
2.6 Conditional Operations

2.7 Polymorphism
2.8 Custom Attributes

2.9 Transaction Operations

2.10 Optimistic Locking

2.11 Rate-Limited Operation
2.12 Use PynamoDB Locally

213 Signals o

2.14 PynamoDB Examples

215 Settingso
2.16 LowLevel API
2017 AWS ACCESS '« v v v v e e e e e
218 Logging.
2.19 Contributing
220 ReleaseNotes.
2.21 Versioning Scheme
222 Upgrading

3 API docs

31 APL ... o

4 Indices and tables
Python Module Index

Index

CONTENTS

71

......................... 71

91

93

95

PynamoDB Documentation, Release 6.0.2

PynamoDB is a Pythonic interface to Amazon’s DynamoDB. By using simple, yet powerful abstractions over the
DynamoDB API, PynamoDB allows you to start developing immediately.

CONTENTS 1

PynamoDB Documentation, Release 6.0.2

2 CONTENTS

CHAPTER
ONE

FEATURES

Python 3 support

Support for Unicode, Binary, JSON, Number, Set, and UTC Datetime attributes
Support for DynamoDB Local

Support for all of the DynamoDB API

Support for Global and Local Secondary Indexes

Batch operations with automatic pagination

Iterators for working with Query and Scan operations

Fully tested

https://coveralls.io/github/pynamodb/PynamoDB

PynamoDB Documentation, Release 6.0.2

4 Chapter 1. Features

CHAPTER
TWO

TOPICS

2.1 Usage

PynamoDB was written from scratch to be Pythonic, and supports the entire DynamoDB API.

2.1.1 Creating a model

Let’s create a simple model to describe users.

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class UserModel (Model):

e

A DynamoDB User

o

class Meta:
table_name = 'dynamodb-user'
region = 'us-west-1'

email = UnicodeAttribute(hash_key=True)
first_name = UnicodeAttribute()
last_name = UnicodeAttribute()

Models are backed by DynamoDB tables. In this example, the model has a hash key attribute that stores the user’s
email address. Any attribute can be set as a hash key by including the argument hash_key=True. The region attribute
is not required, and will default to us-east-1 if not provided.

PynamoDB allows you to create the table:

>>> UserModel.create_table(read_capacity_units=1, write_capacity_units=1)

Now you can create a user in local memory:

>>> user = UserModel ('test@example.com', first_name='Samuel',6 last_name='Adams")
dynamodb-user<test@example.com>

To write the user to DynamoDB, just call save:

>>> user.save()

You can see that the table count has changed:

PynamoDB Documentation, Release 6.0.2

>>> UserModel . count ()
1

Attributes can be accessed and set normally:

>>> user.email
'test@example.com'

>>> user.email = 'foo-bar'
>>> user.email

'foo-bar

Did another process update the user? We can refresh the user with data from DynamoDB:

>>> user.refresh()

Ready to delete the user?

>>> user.delete()

2.1.2 Changing items

Changing existing items in the database can be done using either update() or save(). There are important differences
between the two.

Use of save() looks like this:

user = UserModel.get('test@example.com')
user. first_name = 'Robert'
user.save()

Use of update() (in its simplest form) looks like this:

user = UserModel.get('test@example.com')
user.update(
actions=[
UserModel . first_name.set('Robert")
1
)

save() will entirely replace an object (it internally uses Putltem). As a consequence, even if you modify only one
attribute prior to calling save(), the entire object is re-written. Any modifications done to the same user by other
processes will be lost, even if made to other attributes that you did not change. To avoid this, use update() to perform
more fine grained updates or see the Conditional Operations for how to avoid race conditions entirely.

Additionally, PynamoDB ignores attributes it does not know about when reading an object from the database. As a
result, if the item in DynamoDB contains attributes not declared in your model, save() will cause those attributes to be
deleted.

In particular, performing a rolling upgrade of your application after having added an attribute is an example of such a
situation. To avoid data loss, either avoid using save() or perform a multi-step update with the first step is to upgrade
to a version that merely declares the attribute on the model without ever setting it to any value.

6 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

PynamoDB Documentation, Release 6.0.2

2.1.3 Querying

PynamoDB provides an intuitive abstraction over the DynamoDB Query API. All of the Query API comparison oper-
ators are supported.

Suppose you had a table with both a hash key that is the user’s last name and a range key that is the user’s first name:

class UserModel (Model):

i

A DynamoDB User
class Meta:
table_name = 'dynamodb-user'
email = UnicodeAttribute()
first_name = UnicodeAttribute(range_key=True)
last_name = UnicodeAttribute(hash_key=True)

Now, suppose that you want to search the table for users with a last name ‘Smith’, and first name that begins with the
letter ‘J’:

for user in UserModel.query('Smith', UserModel.first_name.startswith('J')):
print(user. first_name)

You can combine query terms:

for user in UserModel.query('Smith', UserModel.first_name.startswith('J') | UserModel.
—email.contains('domain.com')):
print (user)

2.1.4 Counting ltems

You can retrieve the count for queries by using the count method:

print (UserModel.count('Smith', UserModel.first_name.startswith('J"))

Counts also work for indexes:

print (UserModel.custom_index.count('my_hash_key'))

Alternatively, you can retrieve the table item count by calling the count method without filters:

print(UserModel.count())

Note that the first positional argument to count() is a hash_key. Although this argument can be None, filters must not
be used when hash_key is None:

raises a ValueError
print (UserModel.count (UserModel. first_name == 'John'))

returns count of only the matching users
print (UserModel.count ('my_hash_key', UserModel.first_name == 'John'))

2.1. Usage 7

PynamoDB Documentation, Release 6.0.2

2.1.5 Batch Operations

PynamoDB provides context managers for batch operations.

Note

DynamoDB limits batch write operations to 25 PutRequests and DeleteRequests combined. PynamoDB automati-
cally groups your writes 25 at a time for you.

Let’s create a whole bunch of users:

with UserModel.batch_write() as batch:
for i in range(100):
batch.save(UserModel ('user- @example.com'.format(i), first_name='Samuel', last_
—name="'Adams "))

Now, suppose you want to retrieve all those users:

user_keys = [('user-{0}@example.com'.format(i)) for i in range(100)]
for item in UserModel.batch_get(user_keys):
print(item)

Perhaps you want to delete all these users:

with UserModel.batch_write() as batch:
items = [UserModel('user- @example.com'.format(x)) for x in range(100)]
for item in items:
batch.delete(item)

2.2 Basic Tutorial
PynamoDB is an attempt to be a Pythonic interface to DynamoDB that supports all of DynamoDB’s powerful features.
This includes support for unicode and binary attributes.
But why stop there? PynamoDB also supports:
* Sets for Binary, Number, and Unicode attributes
* Automatic pagination for bulk operations
* Global secondary indexes
* Local secondary indexes

* Complex queries

2.2.1 Why PynamoDB?

It all started when I needed to use Global Secondary Indexes, a new and powerful feature of DynamoDB. I quickly
realized that my go to library, dynamodb-mapper, didn’t support them. In fact, it won’t be supporting them anytime
soon because dynamodb-mapper relies on another library, boto.dynamodb, which itself won’t support them. In fact,
boto doesn’t support Python 3 either. If you want to know more, I blogged about it.

8 Chapter 2. Topics

https://dynamodb-mapper.readthedocs.io/en/latest/
http://docs.pythonboto.org/en/latest/migrations/dynamodb_v1_to_v2.html
http://jlafon.io/pynamodb.html

PynamoDB Documentation, Release 6.0.2

2.2.2 Installation

$ pip install pynamodb

Don’t have pip? Here are instructions for installing pip.

Alternatively, if you are running Anaconda or miniconda, use:

$ conda install -c conda-forge pynamodb

2.2.3 Getting Started

PynamoDB provides three API levels, a Connection, a TableConnection, and a Model. Each API is built on top
of the previous, and adds higher level features. Each API level is fully featured, and can be used directly. Before you
begin, you should already have an Amazon Web Services account, and have your AWS credentials configured your
boto.

Defining a Model

The most powerful feature of PynamoDB is the Model API. You start using it by defining a model class that inherits
from pynamodb.models.Model. Then, you add attributes to the model that inherit from pynamodb.attributes.
Attribute. The most common attributes have already been defined for you.

Here is an example, using the same table structure as shown in Amazon’s DynamoDB Thread example.

Note

The table that your model represents must exist before you can use it. It can be created in this example by calling
Thread.create_table(...). Any other operation on a non existent table will cause a TableDoesNotExist exception to
be raised.

from pynamodb.models import Model
from pynamodb.attributes import (

UnicodeAttribute, NumberAttribute, UnicodeSetAttribute, UTCDateTimeAttribute
)

class Thread(Model):
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttribute(hash_key=True)
subject = UnicodeAttribute(range_key=True)
views = NumberAttribute(default=0)

replies = NumberAttribute(default=0)
answered = NumberAttribute(default=0)

tags = UnicodeSetAttribute()
last_post_datetime = UTCDateTimeAttribute()

All DynamoDB tables have a hash key, and you must specify which attribute is the hash key for each Model you define.
The forum_name attribute in this example is specified as the hash key for this table with the hash_key argument;
similarly the subject attribute is specified as the range key with the range_key argument.

2.2. Basic Tutorial 9

https://pip.pypa.io/en/latest/installing/
https://www.anaconda.com/products/distribution
https://aws.amazon.com/
https://boto.readthedocs.io/en/latest/boto_config_tut.html
https://boto.readthedocs.io/en/latest/boto_config_tut.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleTables.html

PynamoDB Documentation, Release 6.0.2

Model Settings

The Meta class is required with at least the table_name class attribute to tell the model which DynamoDB table to
use - Meta can be used to configure the model in other ways too. You can specify which DynamoDB region to use with
the region, and the URL endpoint for DynamoDB can be specified using the host attribute. You can also specify the
table’s read and write capacity by adding read_capacity_units and write_capacity_units attributes.

Here is an example that specifies both the host and the region to use:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):

class Meta:
table_name = 'Thread'
Specifies the region
region = 'us-west-1'

Optional: Specify the hostname only if it needs to be changed from the default.,
—AWS setting
host = 'http://localhost’
Specifies the write capacity
write_capacity_units = 10
Specifies the read capacity
read_capacity_units = 10
forum_name = UnicodeAttribute(hash_key=True)

Defining Model Attributes

A Model has attributes, which are mapped to attributes in DynamoDB. Attributes are responsible for serializ-
ing/deserializing values to a format that DynamoDB accepts, optionally specifying whether or not an attribute may
be empty using the null argument, and optionally specifying a default value with the default argument. You can spec-
ify a default value for any field, and default can even be a function.

Note

DynamoDB will not store empty attributes. By default, an Attribute cannot be None unless you specify
null=True in the attribute constructor.

DynamoDB attributes can’t be null and set attributes can’t be empty. PynamoDB attempts to do the right thing by
pruning null attributes when serializing an item to be put into DynamoDB. By default, PynamoDB attributes can’t
be null either - but you can easily override that by adding nul1=True to the constructor of the attribute. When you
make an attribute nullable, PynamoDB will omit that value if the value is None when saving to DynamoDB. It is not
recommended to give every attribute a value if those values can represent null, as those values representing null take up
space - which literally costs you money (DynamoDB pricing is based on reads and writes per second per KB). Instead,
treat the absence of a value as equivalent to being null (which is what PynamoDB does). The only exception of course,
are hash and range keys which must always have a value.

Here is an example of an attribute with a default value:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

(continues on next page)

10 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

PynamoDB Documentation, Release 6.0.2

(continued from previous page)
class Thread(Model):
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute(hash_key=True, default='My Default Value')

Here is an example of an attribute with a default callable value:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

def my_default_value():
return 'My default value'

class Thread(Model):
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute(hash_key=True, default=my_default_value)

Here is an example of an attribute that can be empty:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute(hash_key=True)
my_nullable_attribute = UnicodeAttribute(null=True)

By default, PynamoDB assumes that the attribute name used on a Model has the same name in DynamoDB. For
example, if you define a UnicodeAttribute called ‘username’ then PynamoDB will use ‘username’ as the field name for
that attribute when interacting with DynamoDB. If you wish to have custom attribute names, they can be overridden.
One such use case is the ability to use human readable attribute names in PynamoDB that are stored in DynamoDB
using shorter, terse attribute to save space.

Here is an example of customizing an attribute name:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute(hash_key=True)
This attribute will be called 'tn' in DynamoDB
thread_name = UnicodeAttribute(null=True, attr_name='tn')

PynamoDB comes with several built in attribute types for convenience, which include the following:
* UnicodeAttribute
* UnicodeSetAttribute
* NumberAttribute

e NumberSetAttribute

2.2. Basic Tutorial 11

PynamoDB Documentation, Release 6.0.2

All of these built in attributes handle serializing and deserializing themselves.

BinaryAttribute
BinarySetAttribute
UTCDateTimeAttribute
BooleanAttribute
JSONAttribute

MapAttribute

Creating the table

If your table doesn’t already exist, you will have to create it. This can be done with easily:

>>> if not Thread.exists():

Thread.create_table(read_capacity_units=1, write_capacity_units=1, wait=True)

The wait argument tells PynamoDB to wait until the table is ready for use before returning.

Deleting a table

Deleting is made quite simple when using a Model:

>>> Thread.delete_table()

2.2.4 Using the Model

Now that you’ve defined a model (referring to the example above), you can start interacting with your DynamoDB table.
You can create a new Thread item by calling the Thread constructor.

Creating ltems

>>> thread_item = Thread('forum_name',

'forum_subject')

The first two arguments are automatically assigned to the item’s hash and range keys. You can specify attributes during
construction as well:

>>> thread_item = Thread('forum_name',

'forum_subject', replies=10)

The item won’t be added to your DynamoDB table until you call save:

>>> thread_item.save()

If you want to retrieve an item that already exists in your table, you can do that with gez:

>>> thread_item = Thread.get('forum_name',

'forum_subject')

If the item doesn’t exist, Thread.DoesNotExist will be raised.

Updating ltems

You can update an item with the latest data from your table:

>>> thread_item.refresh()

12

Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

Updates to table items are supported too, even atomic updates. Here is an example of atomically updating the view
count of an item + updating the value of the last post.

>>> thread_item.update(actions=[
Thread.views.set(Thread.views + 1),
Thread.last_post_datetime.set(datetime.now()),
D

Update actions use the update expression syntax (see Update Expressions).

Deprecated since version 2.0: update_item is replaced with update ()

>>> thread_item.update_item('views', 1, action='add')

2.3 Index Queries

DynamoDB supports two types of indexes: global secondary indexes, and local secondary indexes. Indexes can make
accessing your data more efficient, and should be used when appropriate. See the documentation for more information.

2.3.1 Index Settings

The Meta class is required with at least the projection class attribute to specify the projection type. For Global
secondary indexes, the read_capacity_units and write_capacity_units also need to be provided. By default,
PynamoDB will use the class attribute name that you provide on the model as the index_name used when making
requests to the DynamoDB API. You can override the default name by providing the index_name class attribute in the
Meta class of the index.

2.3.2 Global Secondary Indexes

Indexes are defined as classes, just like models. Here is a simple index class:

from pynamodb.indexes import GlobalSecondaryIndex, AllProjection
from pynamodb.attributes import NumberAttribute

class ViewIndex(GlobalSecondaryIndex):

e

This class represents a global secondary index

o

class Meta:
index_name is optional, but can be provided to override the default name
index_name = 'foo-index'

read_capacity_units = 2
write_capacity_units = 1

All attributes are projected
projection = AllProjection()

This attribute is the hash key for the index
Note that this attribute must also exist

in the model

view = NumberAttribute(default=0, hash_key=True)

Global indexes require you to specify the read and write capacity, as we have done in this example. Indexes are said to
project attributes from the main table into the index. As such, there are three styles of projection in DynamoDB, and

2.3. Index Queries 13

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

PynamoDB Documentation, Release 6.0.2

PynamoDB provides three corresponding projection classes.
e AllProjection: All attributes are projected.
* KeysOnlyProjection: Only the index and primary keys are projected.
* IncludeProjection(attributes): Only the specified attributes are projected.

‘We still need to attach the index to the model in order for us to use it. You define it as a class attribute on the model, as
in this example:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class TestModel (Model):

o

A test model that uses a global secondary index
class Meta:

table_name = 'TestlModel'
forum = UnicodeAttribute(Chash_key=True)
thread = UnicodeAttribute(range_key=True)
view_index = ViewIndex()
view = NumberAttribute(default=0)

2.3.3 Local Secondary Indexes

Local secondary indexes are defined just like global ones, but they inherit from LocalSecondaryIndex instead:

from pynamodb.indexes import LocalSecondaryIndex, AllProjection
from pynamodb.attributes import NumberAttribute

class ViewIndex(LocalSecondaryIndex):

e

This class represents a local secondary index
class Meta:
All attributes are projected
projection = AllProjection()
forum = UnicodeAttribute(hash_key=True)
view = NumberAttribute(range_key=True)

Every local secondary index must meet the following conditions:
 The partition key (hash key) is the same as that of its base table.
» The sort key (range key) consists of exactly one scalar attribute. The range key can be any attribute.

» The sort key (range key) of the base table is projected into the index, where it acts as a non-key attribute.

2.3.4 Querying an index

Index queries use the same syntax as model queries. Continuing our example, we can query the view_index global
secondary index simply by calling query:

14 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

for item in TestModel.view_index.query(1):
print("Item queried from index: " format(item))

This example queries items from the table using the global secondary index, called view_index, using a hash key
value of 1 for the index. This would return all TestModel items that have a view attribute of value 1.

Local secondary index queries have a similar syntax. They require a hash key, and can include conditions on the range
key of the index. Here is an example that queries the index for values of view greater than zero:

for item in TestModel.view_index.query('foo', TestModel.view > 0):
print("Item queried from index: " format(item.view))

2.3.5 Pagination and last evaluated key

The query returns a ResultIterator object that transparently paginates through results. To stop iterating and allow
the caller to continue later on, use the last_evaluated_key property of the iterator:

def iterate_over_page(last_evaluated_key = None):
results = TestModel.view_index.query('foo', TestModel.view > O,
limit=10,
last_evaluated_key=last_evaluated_key)
for item in results:

return results.last_evaluated_key

The last_evaluated_key is effectively the key attributes of the last iterated item; the next returned items will be the
items following it. For index queries, the returned last_evaluated_key will contain both the table’s hash/range keys
and the indexes hash/range keys. This is due to the fact that DynamoDB indexes have no uniqueness constraint, i.e. the
same hash/range pair can map to multiple items. For the example above, the last_evaluated_key will look like:

{

"forum": {"S": "..."},
"thread": {"S": "..."},
"view": {"N": "..."}

2.4 Batch Operations
Batch operations are supported using context managers, and iterators. The DynamoDB API has limits for each batch

operation that it supports, but PynamoDB removes the need implement your own grouping or pagination. Instead, it
handles pagination for you automatically.

Note

DynamoDB limits batch write operations to 25 PutRequests and DeleteRequests combined. PynamoDB automati-
cally groups your writes 25 at a time for you.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (

(continues on next page)

2.4. Batch Operations 15

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

UnicodeAttribute, NumberAttribute

class Thread(Model):
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttributeChash_key=True)
subject = UnicodeAttribute(range_key=True)
views = NumberAttribute(default=0)

2.4.1 Batch Writes

Here is an example using a context manager for a bulk write operation:

with Thread.batch_write() as batch:
items = [Thread('forum- '.format(x), 'subject- '.format(x)) for x in range(1000)]
for item in items:
batch.save(item)

2.4.2 Batch Gets

Here is an example using an iterator for retrieving items in bulk:

item_keys = [('forum- '.format(x), 'subject- '.format(x)) for x in range(1000)]
for item in Thread.batch_get(item_keys):
print(item)

2.4.3 Query Filters

You can query items from your table using a simple syntax:

for item in Thread.query('ForumName', Thread.subject.startswith('mygreatprefix')):
print("Query returned item ".format(item))

Additionally, you can filter the results before they are returned using condition expressions:

for item in Thread.query('ForumName', Thread.subject == 'Subject', Thread.views > 0):
print("Query returned item ".format(item))

Query filters use the condition expression syntax (see Condition Expressions).

Note

DynamoDB only allows the following conditions on range keys: ==, <, <=, >, >=, between, and startswith.
DynamoDB does not allow multiple conditions using range keys.

16 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

2.4.4 Scan Filters

Scan filters have the same syntax as Query filters, but support all condition expressions:

>>> for item in Thread.scan(Thread. forum_name.startswith('Prefix') & (Thread.views >.
—~10)):
print (item)

2.4.5 Limiting results

Both Scan and Query results can be limited to a maximum number of items using the limit argument.

for item in Thread.query('ForumName', Thread.subject.startswith('mygreatprefix'),.
—1imit=5):
print("Query returned item " format(item))

2.5 Update Operations

The Updateltem DynamoDB operations allows you to create or modify attributes of an item using an update expression.
See the official documentation for more details.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (

ListAttribute, UnicodeAttribute, UnicodeSetAttribute, NumberAttribute
)

class Thread(Model):
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttributeChash_key=True)
subjects = UnicodeSetAttribute(default=set)
author = UnicodeAttribute(null=True)

views = NumberAttribute(default=0)

notes = ListAttribute(default=1list)

2.5.1 Update Expressions

PynamoDB supports creating update expressions from attributes using a mix of built-in operators and method calls.
Any value provided will be serialized using the serializer defined for that attribute.

2.5. Update Operations 17

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

PynamoDB Documentation, Release 6.0.2

DynamoDB Action / PynamoDB Attribute Example

Operator Syntax Types
SET set(value) Any Thread.views.set(10)
REMOVE remove() Any Thread.notes.remove()
REMOVE remove() Element of Thread.notes[0®].remove()
List
ADD add(number) Number Thread.views.add (1)
ADD add(set) Set Thread.subjects.add({'A New Subject',
'Another New Subject'})
DELETE delete(set) Set Thread.subjects.delete({'An 0ld Subject'})

The following expressions and functions can only be used in the context of the above actions:

DynamoDB Action / Op- PynamoDB Syntax Attribute Example

erator Types

attr_or_value_1 + attr_or_value_1 + Number Thread.views + 5

attr_or_value_2 attr_or_value_2

attr_or_value_1 - attr_or_value_l - Number 5 - Thread.views

attr_or_value_2 attr_or_value_2

list_append(attr , value) append(value) List Thread.notes.append(['my last
note'])

list_append(value , attr) prepend(value) List Thread.notes.prepend (['my
first note'])

if_not_exists(attr, value) attr | value Any Thread. forum_name | 'Default

Forum Name'

2.5.2 set action

The set action is the simplest action as it overwrites any previously stored value:

thread.update(actions=[
Thread.views.set(10),
D

assert thread.views == 10

It can reference existing values (from this or other attributes) for arithmetics and concatenation:

Increment views by 5
thread.update(actions=[
Thread.views.set(Thread.views + 5)

D

Append 2 notes
thread.update(actions=[
Thread.notes.set(
Thread.notes.append([
'my last note',
'p.s. no, really, this is my last note',

D,

(continues on next page)

18 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

D

Prepend a note
thread.update(actions=[
Thread.notes.set(
Thread.notes.prepend([
'my first note',

D,
D

Set author to John Doe unless there's already one
thread.update(actions=[

Thread.author.set(Thread.author | 'John Doe')
D

2.5.3 remove action

The remove action unsets attributes:

thread.update(actions=[
Thread.views.remove(),

D

assert thread.views == 0 # default value

It can also be used to remove elements from a list attribute:

Remove the first note
thread.update(actions=[
Thread.notes[0] .remove(),

D

2.5.4 add action

Applying to (binary, number and string) set attributes, the add action adds elements to the set:

Add the subjects 'A New Subject' and 'Another New Subject'
thread.update(actions=[

Thread.subjects.add({'A New Subject', 'Another New Subject'})
D

Applying to number attributes, the add action increments or decrements the number and is equivalent to a set action:

Increment views by 5

thread.update(actions=[
Thread.views.add(5),

D

Also increment views by 5

thread.update(actions=[
Thread.views.set(Thread.views + 5),

D

2.5. Update Operations 19

PynamoDB Documentation, Release 6.0.2

2.5.5 delete action

For set attributes, the delete action is the opposite of the add action:

Delete the subject 'An 0ld Subject'
thread.update(actions=[

Thread.subjects.delete({'An 0ld Subject'})
D

2.6 Conditional Operations

Some DynamoDB operations support the inclusion of conditions. The user can supply a condition to be evaluated by
DynamoDB before an item is modified (with save, update and delete) or before an item is included in the result (with
query and scan). See the official documentation for more details.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute, NumberAttribute

class Thread(Model):
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttributeChash_key=True)
subject = UnicodeAttribute(range_key=True)
views = NumberAttribute(default=0)

authors = ListAttribute()

properties = MapAttribute()

2.6.1 Condition Expressions

PynamoDB supports creating condition expressions from attributes using a mix of built-in operators and method calls.
Any value provided will be serialized using the serializer defined for that attribute. See the comparison operator and
function reference for more details.

20 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ConditionalUpdate
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html

PynamoDB Documentation, Release 6.0.2

DynamoDB Con- PynamoDB Attribute Types Example
dition Syntax
= == Any Thread. forum_name == 'Some Forum'
<> = Any Thread. forum_name != 'Some Forum'
< < Binary, Number, Thread.views < 10
String
<= <= Binary, Number, Thread.views <= 10
String
> > Binary, Number, Thread.views > 10
String
>= >= Binary, Number, Thread.views >= 10
String
BETWEEN between(lower , Binary, Number, Thread.views.between(l, 5)
upper) String
IN is_in(*values) Binary, Number, Thread.subject.is_in('Subject’,
String 'Other Subject')
attribute_exists (exists() Any Thread. forum_name.exists()
path)
attribute_not_exists does_not_exist() Any Thread. forum_name.does_not_exist()
(path)
attribute_type (path is_type() Any Thread. forum_name.is_type()
, type)
begins_with (path , startswith(prefix String Thread.subject.
substr)) startswith('Example')
contains (path , contains(item) Set, String Thread.subject.contains (' foobar"')
operand)
size (path) size(attribute) Binary, List, Map, size(Thread.subject) == 10
Set, String
AND & Any (Thread.views > 1) & (Thread.views
< 5)
OR | Any (Thread.views < 1) | (Thread.views
> 5)
NOT ~ Any ~Thread.subject.contains('foobar"')

Conditions expressions using nested list and map attributes can be created with Python’s item operator [].

Query for threads where 'properties' map contains key 'emoji’
Thread.query(..., filter_condition=Thread.properties['emoji'].exists())

Query for threads where the first author's name contains "John"

Thread.authors[0] .contains("John")

Conditions can be composited using & (AND) and | (OR) operators. For the & (AND) operator, the left-hand side
operand can be None to allow easier chaining of filter conditions:

condition = None

if request.subject:

condition &= Thread.subject.contains(request.subject)

if request.min_views:
condition &= Thread.views >= min_views

(continues on next page)

2.6. Conditional Operations

21

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

results = Thread.query(..., filter_condition=condition)

2.6.2 Conditioning on keys

When writing to a table (save, update, delete), an exists() condition on a key attribute ensures that the item already
exists (under the given key) in the table before the operation. For example, a save or update would update an existing
item, but fail if the item does not exist.

Correspondingly, a does_not_exist() condition on a key ensures that the item does not exist. For example, a save
with such a condition ensures that it’s not overwriting an existing item.

For models with a range key, conditioning exists() on either the hash key or the range key has the same effect. There
is no way to condition on _some_ item existing with the given hash key. For example:

thread = Thread('DynamoDB', 'Using conditions')

This will fail if the item ('DynamoDB', 'Using conditions') does not exist,
even if the item ('DynamoDB', 'Using update expressions') does.
thread.save(condition=Thread. forum_name.exists())

This will fail if the item ('DynamoDB', 'Using conditions') does not exist,
even if the item ('S3', 'Using conditions') does.
thread.save(condition=Thread.subject.exists())

2.6.3 Conditional Model.save

This example saves a Thread item, only if the item exists.

thread_item = Thread('Existing Forum', 'Example Subject')

DynamoDB will only save the item if forum_name exists
print (thread_item.save(Thread. forum_name.exists())

You can specify multiple conditions
print(thread_item.save(Thread. forum_name.exists() & Thread.subject.contains('foobar')))

2.6.4 Conditional Model.update

This example will update a Thread item, if the views attribute is less than 5 OR greater than 10:

thread_item.update(condition=(Thread.views < 5) | (Thread.views > 10))

2.6.5 Conditional Model.delete

This example will delete the item, only if its views attribute is equal to 0.

print (thread_item.delete(Thread.views == 0))

22 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

2.6.6 Conditional Operation Failures

You can check for conditional operation failures by inspecting the cause of the raised exception:

try:
thread_item.save(Thread. forum_name.exists())
except PutError as e:
if e.cause_response_code = "ConditionalCheckFailedException":
raise ThreadDidNotExistError()

2.7 Polymorphism

PynamoDB supports polymorphism through the use of discriminators.

A discriminator is a value that is written to DynamoDB that identifies the python class being stored.

2.7.1 Discriminator Attributes

The discriminator value is stored using a special attribute, the DiscriminatorAttribute. Only a single DiscriminatorAt-
tribute can be defined on a class.

The discriminator value can be assigned to a class as part of the definition:

class ParentClass(MapAttribute):
cls = DiscriminatorAttribute()

class ChildClass(ParentClass, discriminator="'child'):
pass

Declaring the discriminator value as part of the class definition will automatically register the class with the discrimi-
nator attribute. A class can also be registered manually:

class ParentClass(MapAttribute):
cls = DiscriminatorAttribute()

class ChildClass(ParentClass):
pass

ParentClass._cls.register_class(ChildClass, 'child')

Note

A class may be registered with a discriminator attribute multiple times. Only the first registered value is used
during serialization; however, any registered value can be used to deserialize the class. This behavior is intended
to facilitate migrations if discriminator values must be changed.

Warning

Discriminator values are written to DynamoDB. Changing the value after items have been saved to the database
can result in deserialization failures. In order to read items with an old discriminator value, the old value must be
manually registered.

2.7. Polymorphism 23

PynamoDB Documentation, Release 6.0.2

2.7.2 Model Discriminators

Model classes also support polymorphism through the use of discriminators. (Note: currently discriminator attributes
cannot be used as the hash or range key of a table.)

class ParentModel (Model):
class Meta:
table_name = 'polymorphic_table'
id = UnicodeAttributeChash_key=True)
cls = DiscriminatorAttribute()

class FooModel (ParentModel, discriminator='Foo'):
foo = UnicodeAttribute()

class BarModel (ParentModel, discriminator='Bar'):
bar = UnicodeAttribute()

BarModel (id="Hello', bar='lWorld!"').serialize()
{'id': {'S': Hello'}, 'cls': {'S': Bar'}, 'bar': {'S': World!'}}

Note

Read operations that are performed on a class that has a discriminator value are slightly modified to ensure that only
instances of the class are returned. Query and scan operations transparently add a filter condition to ensure that
only items with a matching discriminator value are returned. Get and batch get operations will raise a ValueError
if the returned item(s) are not a subclass of the model being read.

2.8 Custom Attributes

Attributes in PynamoDB are classes that are serialized to and from DynamoDB attributes. PynamoDB provides at-
tribute classes for all DynamoDB data types, as defined in the DynamoDB documentation. Higher level attribute types
(internally stored as a DynamoDB data types) can be defined with PynamoDB. Two such types are included with
PynamoDB for convenience: JSONAttribute and UTCDateTimeAttribute.

2.8.1 Attribute Methods

All Attribute classes must define three methods, serialize, deserialize and get_value. The serialize
method takes a Python value and converts it into a format that can be stored into DynamoDB. The get_value method
reads the serialized value out of the DynamoDB record. This raw value is then passed to the deserialize method. The
deserialize method then converts it back into its value in Python. Additionally, a class attribute called attr_type
is required for PynamoDB to know which DynamoDB data type the attribute is stored as. The get_value method is
provided to help when migrating from one attribute type to another, specifically with the BooleanAttribute type.
If you’re writing your own attribute and the attr_type has not changed you can simply use the base Attribute
implementation of get_value.

2.8.2 Writing your own attribute

You can write your own attribute class which defines the necessary methods like this:

from pynamodb.attributes import Attribute
from pynamodb.constants import BINARY

(continues on next page)

24 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

class CustomAttribute(Attribute):

o

A custom model attribute

e

This tells PynamoDB that the attribute is stored in DynamoDB as a binary
attribute
attr_type = BINARY

def serialize(self, value):
convert the value to binary and return it

def deserialize(self, value):
convert the value from binary back into whatever type you require

2.8.3 Custom Attribute Example

The example below shows how to write a custom attribute that will pickle a customized class. The attribute itself
is stored in DynamoDB as a binary attribute. The pickle module is used to serialize and deserialize the attribute.
In this example, it is not necessary to define attr_type because the PickleAttribute class is inheriting from
BinaryAttribute which has already defined it.

import pickle
from pynamodb.attributes import BinaryAttribute, UnicodeAttribute
from pynamodb.models import Model

class Color(object):

e

This class is used to demonstrate the PickleAttribute below
def __init__(self, name):
self.name = name

def __str__(self):
return "<Color: {/>".format(self.name)

class PickleAttribute(BinaryAttribute):
This class will serializer/deserialize any picklable Python object.
The value will be stored as a binary attribute in DynamoDB.

o

def serialize(self, value):

i

The super class takes the binary string returned from pickle.dumps
and encodes it for storage in DynamoDB

i

return super(PickleAttribute, self).serialize(pickle.dumps(value))

def deserialize(self, value):
return pickle.loads(super(PickleAttribute, self).deserialize(value))
(continues on next page)

2.8. Custom Attributes 25

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

class CustomAttributeModel (Model):

e

A model with a custom attribute

e

class Meta:
host = 'http://localhost:8000"'
table_name = 'custom_attr'

read_capacity_units = 1
write_capacity_units = 1

id = UnicodeAttribute(hash_key=True)
obj = PickleAttribute()

Now we can use our custom attribute to round trip any object that can be pickled.

>>>instance = CustomAttributeModel ()
>>>instance.obj = Color('red')
>>>instance.id = 'red'
>>>instance.save()

>>>instance = CustomAttributeModel.get('red')
>>>print(instance.obj)
<Color: red>

2.8.4 List Attributes

DynamoDB list attributes are simply lists of other attributes. DynamoDB asserts no requirements about the types
embedded within the list. Creating an untyped list is done like so:

from pynamodb.attributes import ListAttribute, NumberAttribute, UnicodeAttribute
class GroceryList(Model):
class Meta:

table_name = 'GroceryListModel'

store_name = UnicodeAttribute(hash_key=True)
groceries = ListAttribute()

Example usage:

GroceryList(store_name='Haight Street Market',
groceries=['bread', 1, 'butter', 6, 'milk', 1])

PynamoDB can provide type safety if it is required. Currently PynamoDB does not allow type checks on anything
other than subclasses of Attribute. We’re working on adding more generic type checking in a future version. When
defining your model use the of= kwarg and pass in a class. PynamoDB will check that all items in the list are of the
type you require.

from pynamodb.attributes import ListAttribute, NumberAttribute

(continues on next page)

26 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

class OfficeEmployeeMap(MapAttribute):
office_employee_id = NumberAttribute()
person = UnicodeAttribute()

class Office(Model):
class Meta:
table_name = 'OfficeModel'’
office_id = NumberAttributeChash_key=True)
employees = ListAttribute(of=0fficeEmployeelMap)

Example usage:

empl = OfficeEmployeeMap(
office_employee_id=123,
person="justin'

)

emp2 = OfficeEmployeeMap(
office_employee_id=125,
person="lita'

)

emp4 = OfficeEmployeeMap(
office_employee_id=126,
person="garrett'

)

Office(
office_id=3,
employees=[empl, emp2, emp3]
).save() # persists

Office(

office_id=3,

employees=["'justin', 'lita', 'garrett']
).save() # raises ValueError

2.8.5 Map Attributes

DynamoDB map attributes are objects embedded inside of top level models. See the examples here. When imple-
menting your own MapAttribute you can simply extend MapAttribute and ignore writing serialization code. These
attributes can then be used inside of Model classes just like any other attribute.

from pynamodb.attributes import MapAttribute, UnicodeAttribute

class CarInfoMap(MapAttribute):
make = UnicodeAttribute(null=False)
model = UnicodeAttribute(null=True)

As with a model and its top-level attributes, a PynamoDB MapAttribute will ignore sub-attributes it does not know
about during deserialization. As a result, if the item in DynamoDB contains sub-attributes not declared as properties
of the corresponding MapAttribute, save() will cause those sub-attributes to be deleted.

2.8. Custom Attributes 27

https://github.com/pynamodb/PynamoDB/blob/master/examples/office_model.py

PynamoDB Documentation, Release 6.0.2

DynamicMapAttribute is a subclass of MapAttribute which allows you to mix and match defined attributes and
undefined attributes.

from pynamodb.attributes import DynamicMapAttribute, UnicodeAttribute

class CarInfo(DynamicMapAttribute):
make = UnicodeAttribute(null=False)
model = UnicodeAttribute(null=True)

car = CarInfo(make='Make-A', model='Model-A', year=1975)
other_car = CarInfo(make='Make-A', model='Model-A', year=1975, seats=3)

2.9 Transaction Operations

Transact operations are similar to Batch operations, with the key differences being that the writes support the inclusion
of condition checks, and they all must fail or succeed together.

Transaction operations are supported using context managers. Keep in mind that DynamoDB imposes limits on the
number of items that a single transaction can contain.

Suppose you have defined a BankStatement model, like in the example below.

from pynamodb.models import Model
from pynamodb.attributes import BooleanAttribute, NumberAttribute, UnicodeAttribute

class BankStatement (Model):
class Meta:
table_name = 'BankStatement'

user_id = UnicodeAttributeChash_key=True)
account_balance = NumberAttribute(default=0)
is_active = BooleanAttribute()

2.9.1 Transact Writes

A Transactlirite can be initialized with the following parameters:
e connection (required) - the Connection used to make the request (see Low Level API)

* client_request_token - an idempotency key for the request (see ClientRequestToken in the DynamoDB API
reference)

e return_consumed_capacity - determines the level of detail about provisioned throughput consumption that
is returned in the response (see ReturnConsumedCapacity in the DynamoDB API reference)

e return_item_collection_metrics - determines whether item collection metrics are returned (see Retur-
nltemCollectionMetrics in the DynamoDB API reference)

Here’s an example of using a context manager for a Transactlirite operation:

from pynamodb.connection import Connection
from pynamodb.transactions import TransactWrite

Two existing bank statements in the following states
userl_statement = BankStatement('userl', account_balance=2000, is_active=True)
user2_statement = BankStatement('user2', account_balance=0, is_active=True)

(continues on next page)

28 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ClientRequestToken
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ReturnConsumedCapacity
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ReturnItemCollectionMetrics
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ReturnItemCollectionMetrics

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

userl_statement.save()
user2_statement.save()

connection = Connection()

with TransactWrite(connection=connection, client_request_token='super-unique-key') as.
—transaction:
attempting to transfer funds from userl's account to user2's
transfer_amount = 1000
transaction.update(
BankStatement (user_id="userl'),
actions=[BankStatement.account_balance.add(transfer_amount * -1)],
condition=(
(BankStatement.account_balance >= transfer_amount) &
(BankStatement.is_active == True)

)

transaction.update(
BankStatement (user_id="user2'),
actions=[BankStatement.account_balance.add(transfer_amount)],
condition=(BankStatement.is_active == True)

userl_statement.refresh()
user2_statement.refresh()

assert userl_statement.account_balance == 1000
assert user2_statement.account_balance == 1000

Now, say you make another attempt to debit one of the accounts when they don’t have enough money in the bank:

from pynamodb.exceptions import TransactWriteError

assert userl_statement.account_balance == 1000
assert user2_statement.account_balance == 1000
try:

with TransactWrite(connection=connection, client_request_token='another-super-unique-
—key') as transaction:
attempting to transfer funds from userl's account to user2's
transfer_amount = 2000
transaction.update(
BankStatement (user_id="userl'),
actions=[BankStatement.account_balance.add(transfer_amount * -1)],
condition=(
(BankStatement.account_balance >= transfer_amount) &
(BankStatement.is_active == True)
)
return_values=ALL_OLD
)
transaction.update(

(continues on next page)

2.9. Transaction Operations 29

PynamoDB Documentation, Release 6.0.2

(continued from previous page)
BankStatement (user_id="user2'),
actions=[BankStatement.account_balance.add(transfer_amount)],
condition=(BankStatement.is_active == True)
)
except TransactWriteError as e:
Because the condition check on the account balance failed,
the entire transaction should be cancelled

assert e.cause_response_code == 'TransactionCanceledException'

the first 'update' was a reason for the cancellation

assert e.cancellation_reasons[0].code == 'ConditionalCheckFailed'

when return_values=ALL_OLD, the old values can be accessed from the raw_item.,
—property

assert BankStatement.from_dynamodb_dict(e.cancellation_reasons[0].raw_item) == userl_
—.statement

the second 'update' wasn't a reason, but was cancelled too
assert e.cancellation_reasons[1] is None

userl_statement.refresh()
user2_statement.refresh()

and both models should be unchanged

assert userl_statement.account_balance == 1000
assert user2_statement.account_balance == 1000

Condition Check

The ConditionCheck operation is used on a Transactirite to check if the current state of a record you aren’t
modifying within the overall transaction fits some criteria that, if it fails, would cause the entire transaction to fail. The
condition argument is of type Conditional Operations.

* model_cls (required)
* hash_key (required)
* range_key (optional)

* condition (required) - of type Condition (see Conditional Operations)

with TransactWrite(connection=connection) as transaction:
transaction.condition_check(BankStatement, 'userl', condition=(BankStatement.is_
—active == True))

Delete
The Delete operation functions similarly to Model.delete.
* model (required)

¢ condition (optional) - of type Condition (see Conditional Operations)

statement = BankStatement.get('userl')

with TransactWrite(connection=connection) as transaction:
transaction.delete(statement, condition=(~BankStatement.is_active))

30 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

Save
The Put operation functions similarly to Model . save.
* model (required)
* condition (optional) - of type Condition (see Conditional Operations)

e return_values (optional) - the values that should be returned if the condition fails ((see Put ReturnValuesOn-
ConditionCheckFailure in the DynamoDB API reference)

statement = BankStatement(user_id="user3', account_balance=20, is_active=True)

with TransactWrite(connection=connection) as transaction:
transaction.save(statement, condition=(BankStatement.user_id.does_not_exist()))

Update
The Update operation functions similarly to Model.update.
* model (required)
e actions (required) - a list of type Action (see Update Expressions)
* condition (optional) - of type Condition (see Conditional Operations)

e return_values (optional) - the values that should be returned if the condition fails (see Update ReturnVal-
uesOnConditionCheckFailure in the DynamoDB API reference)

userl_statement = BankStatement('userl')
with TransactWrite(connection=connection) as transaction:
transaction.update(
userl_statement,
actions=[BankStatement.account_balance.set(0), BankStatement.is_active.
—set(False)]
condition=(BankStatement.user_id.exists())

2.9.2 Transact Gets

with TransactGet(connection=connection) as transaction:
""" attempting to get records of users' bank statements
userl_statement_future = transaction.get(BankStatement, 'userl')
user2_statement_future = transaction.get(BankStatement, 'user2')

i

userl_statement: BankStatement = userl_statement_future.get()
user2_statement: BankStatement = user2_statement_future.get()

The TransactGet operation currently only supports the Get method, which only takes the following parameters:
* model_cls (required)
* hash_key (required)
* range_key (optional)
The . get returns a class of type _ModelFuture that acts as a placeholder for the record until the transaction completes.

To retrieve the resolved model, you say model_future.get(). Any attempt to access this model before the transaction is
complete will result in a InvalidStateError.

2.9. Transaction Operations 31

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Put.html#DDB-Type-Put-ReturnValuesOnConditionCheckFailure
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Put.html#DDB-Type-Put-ReturnValuesOnConditionCheckFailure
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Update.html#DDB-Type-Update-ReturnValuesOnConditionCheckFailure\T1\textgreater {}
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Update.html#DDB-Type-Update-ReturnValuesOnConditionCheckFailure\T1\textgreater {}

PynamoDB Documentation, Release 6.0.2

2.9.3 Error Types
You can expect some new error types with transactions, such as:

e TransactWiriteError - thrown when a Transactlirite request returns a bad response (see the Trans-
actWriteltems Errors section in the DynamoDB API reference).

e TransactGetError - thrown when a TransactGet request returns a bad response (see the TransactGetltems
Errors section in the DynamoDB API reference).

e InvalidStateError - thrown when an attempt is made to access data on a _ModelFuture before the Trans-
actGet request is completed.

2.10 Optimistic Locking

Optimistic Locking is a strategy for ensuring that your database writes are not overwritten by the writes of others. With
optimistic locking, each item has an attribute that acts as a version number. If you retrieve an item from a table, the
application records the version number of that item. You can update the item, but only if the version number on the
server side has not changed. If there is a version mismatch, it means that someone else has modified the item before
you did. The update attempt fails, because you have a stale version of the item. If this happens, you simply try again by
retrieving the item and then trying to update it. Optimistic locking prevents you from accidentally overwriting changes
that were made by others. It also prevents others from accidentally overwriting your changes.

Warning

» Optimistic locking will not work properly if you use DynamoDB global tables as they use last-write-wins for
concurrent updates.

See also: DynamoDBMapper Documentation on Optimistic Locking.

2.10.1 Version Attribute

To enable optimistic locking for a table, add a VersionAttribute to your model definition. The presence of this
attribute will change the model’s behaviors:

* save() and update() would increment the version attribute every time the model is persisted. This allows
concurrent updates not to overwrite each other, at the expense of the latter update failing.

* save(),update() and delete () would fail if they are the “latter update” (by adding to the update’s conditions).
This behavior is optional since sometimes a more granular approach can be desired (see Conditioning on the
version).

class OfficeEmployeeMap(MapAttribute):
office_employee_id = UnicodeAttribute()
person = UnicodeAttribute()

def __eq__(self, other):
return isinstance(other, OfficeEmployeeMap) and self.person == other.person

class Office(Model):
class Meta:
read_capacity_units = 1
write_capacity_units = 1
table_name = 'Office'’
(continues on next page)

32 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#API_TransactWriteItems_Errors
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#API_TransactWriteItems_Errors
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactGetItems.html#API_TransactGetItems_Errors
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactGetItems.html#API_TransactGetItems_Errors
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

host = "http://localhost:8000"
office_id = UnicodeAttribute(hash_key=True)
employees = ListAttribute(of=0fficeEmployeelMap)
name = UnicodeAttribute()
version = VersionAttribute()

The attribute is underpinned by an integer which is initialized with 1 when an item is saved for the first time and is
incremented by 1 with each subsequent write operation.

justin = OfficeEmployeeMap(office_employee_id=str(uuid4()), person='justin')
garrett = OfficeEmployeeMap(office_employee_id=str(uuid4()), person='garrett')
office = Office(office_id=str(uuid4()), name="office", employees=[justin, garrett])
office.save()

assert office.version == 1

Get a second local copy of Office
office_out_of_date = Office.get(office.office_id)

Add another employee and persist the change.
office.employees.append(0OfficeEmployeeMap(office_employee_id=str(uuid4()), person='lita
')

office.save()

On subsequent save or update operations the version is also incremented locally to.
—.match the persisted value so

there's no need to refresh between operations when reusing the local copy.

assert office.version == 2

assert office_out_of_date.version == 1

The version checking is implemented using DynamoDB conditional write constraints, asserting that no value exists for
the version attribute on the initial save and that the persisted value matches the local value on subsequent writes.

2.10.2 Model.{update, save, delete}

These operations will fail if the local object is out-of-date.

@contextmanager
def assert_condition_check_fails(Q):
try:
yield
except (PutError, UpdateError, DeleteError) as e:
assert isinstance(e.cause, ClientError)
assert e.cause_response_code == "ConditionalCheckFailedException"
except TransactWriteError as e:
assert isinstance(e.cause, ClientError)
assert e.cause_response_code == "TransactionCanceledException"
assert any(r.code == "ConditionalCheckFailed" for r in e.cancellation_reasons)
else:
raise AssertionError("The version attribute conditional check should have failed.

")

with assert_condition_check_fails():

office_out_of_date.update(actions=[0ffice.name.set('new office name')])
(continues on next page)

2.10. Optimistic Locking 33

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

office_out_of_date.employees.remove(garrett)
with assert_condition_check_fails(Q):
office_out_of_date.save()

After refreshing the local copy our write operations succeed.
office_out_of_date.refresh()
office_out_of_date.employees.remove(garrett)
office_out_of_date.save()

assert office_out_of _date.version == 3

with assert_condition_check_fails():
office.delete()

2.10.3 Conditioning on the version

To have save(), update() or delete() execute even if the item was changed by someone else, pass the
add_version_condition=False parameter. In this mode, updates would perform unconditionally but would still
increment the version: in other words, you could make other updates fail, but your update will succeed.

Done indiscriminately, this would be unsafe, but can be useful in certain scenarios:
1. For save, this is almost always unsafe and undesirable.

2. For update, use it when updating attributes for which a “last write wins” approach is acceptable, or if you're
otherwise conditioning the update in a way that is more domain-specific.

3. For delete, use it to delete the item regardless of its contents.

For example, if your save operation experiences frequent “ConditionalCheckFailedException” failures, rewrite your
code to call update with individual attributes while passing add_version_condition=False. By disabling the
version condition, you could no longer rely on the checks you’ve done prior to the modification (due to what is known
as the “time-of-check to time-of-use” problem). Therefore, consider adding domain-specific conditions to ensure the
item in the table is in the expected state prior to the update.

For example, let’s consider a hotel room-booking service with the conventional constraint that only one person can
book a room at a time. We can switch from a save to an update by specifying the individual attributes and rewriting
the if statement as a condition:

- if room.booked_by:
raise Exception("Room is already booked™)

room.booked_by = user_id

room.save()

room.update(
actions=[Room.booked_by.set(user_id)],
condition=Room.booked_by.does_not_exist(),
add_version_condition=False,

+ + + +

2.10.4 Transactions

Transactions are supported.

34 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

Successful

connection = ConnectionChost="http://localhost:8000")

office2 = Office(office_id=str(uuid4()), name="second office", employees=[justin])
office2.save()

assert office2.version ==

office3 = Office(office_id=str(uuid4()), name="third office", employees=[garrett])
office3.save()

assert office3.version == 1

with TransactWrite(connection=connection) as transaction:
transaction.condition_check(Office, office.office_id, condition=(0ffice.name.
—exists()))
transaction.delete(office2)
transaction.save(Office(office_id=str(uuid4()), name="new office", employees=[justin,
— garrett]))
transaction.update(
office3,
actions=[
Office.name.set('birdistheword'),

]

try:
office2.refresh()
except DoesNotExist:
pass
else:
raise AssertionError(
'Office with office_id="{}" should have been deleted in the transaction.'
.format (office2.office_id)
)

assert office.version == 2
assert office3.version ==

Failed

with assert_condition_check_fails(), TransactWrite(connection=connection) as transaction:
transaction.save(Office(office.office_id, name='newer name', employees=[]))

with assert_condition_check_fails(), TransactWrite(connection=connection) as transaction:
transaction.update(
Office(office.office_id, name='newer name', employees=[]),
actions=[0ffice.name.set('Newer Office Name')]

)

with assert_condition_check_fails(), TransactWrite(connection-connection) as transaction:
transaction.delete(Office(office.office_id, name='newer name', employees=[]))

2.10. Optimistic Locking 35

PynamoDB Documentation, Release 6.0.2

2.10.5 Batch Operations

Unsupported as they do not support conditional writes.

2.11 Rate-Limited Operation

Scan, Query and Count operations can be rate-limited based on the consumed capacities returned from DynamoDB.
Simply specify the rate_limit argument when calling these methods. Rate limited batch writes are not currently sup-
ported, but if you would like to see it in a future version, please add a feature request for it in Issues.

Note

Rate-limiting is only meant to slow operations down to conform to capacity limitations. Rate-limiting can not be
used to speed operations up. Specifying a higher rate-limit that exceeds the possible writing speed allowed by the
environment, will not have any effect.

2.11.1 Example Usage

Suppose that you have defined a User Model for the examples below.

from pynamodb.models import Model

from pynamodb.attributes import (
UnicodeAttribute

)

class User(Model):
class Meta:
table_name = 'Users'

id = UnicodeAttributeChash_key=True)
name = UnicodeAttribute(range_key=True)

Here is an example using rate-limit in while scanning the User model

Using only 5 RCU per second
for user in User.scan(rate_limit=5):
print("User id: , hame: " format(user.id, user.name))

2.11.2 Query

You can use rate-limit when querying items from your table:

Using only 15 RCU per second
for user in User.query('idl', User.name.startswith('re'), rate_limit = 15):
print("Query returned user " format(user))

2.11.3 Count

You can use rate-limit when counting items in your table:

36 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

Using only 15 RCU per second
count = User.count(rate_limit=15)
print("Count : ".format(count))

2.12 Use PynamoDB Locally

Several DynamoDB compatible servers have been written for testing and debugging purposes. PynamoDB can be used
with any server that provides the same API as DynamoDB.

PynamoDB has been tested with two DynamoDB compatible servers, DynamoDB Local and dynalite.

To use a local server, you need to set the host attribute on your Model’s Meta class to the hostname and port that your
server is listening on.

Note

Local implementations of DynamoDB such as DynamoDB Local or dynalite may not be fully featured (and I don’t
maintain either of those packages), so you may encounter errors or bugs with a local implementation that you would
not encounter using DynamoDB.

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
class Meta:
table_name = "Thread"
host = "http://localhost:8000"
forum_name = UnicodeAttributeChash_key=True)

2.12.1 Running dynalite
Make sure you have the Node Package Manager installed (see npm instructions).

Install dynalite:

$ npm install -g dynalite

Run dynalite:

$ dynalite --port 8000

That’s it, you’ve got a DynamoDB compatible server running on port 8000.

2.12.2 Running DynamoDB Local

DynamoDB local is a tool provided by Amazon that mocks the DynamoDB API, and uses a local file to store your data.
You can use DynamoDB local with PynamoDB for testing, debugging, or offline development. For more information,
you can read Amazon’s Announcement and Jeff Barr’s blog post about it.

* Download the latest version of DynamoDB Local.

» Unpack the contents of the archive into a directory of your choice.

2.12. Use PynamoDB Locally 37

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://github.com/mhart/dynalite
https://docs.npmjs.com/
https://aws.amazon.com/about-aws/whats-new/2013/09/12/amazon-dynamodb-local/
https://aws.amazon.com/blogs/aws/dynamodb-local-for-desktop-development/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.DownloadingAndRunning.html

PynamoDB Documentation, Release 6.0.2

DynamoDB local requires the Java Runtime Environment version 7. Make sure the JRE is installed before continuing.

From the directory where you unpacked DynamoDB local, you can launch it like this:

$ java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar

Once the server has started, you should see output:

$ java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar

2014-03-28 12:09:10.892:INFO:0ejs.Server:jetty-8.1.12.v20130726

2014-03-28 12:09:10.943:INFO:0ejs.AbstractConnector:Started SelectChannelConnector@d.0.0.
—0:8000

Now DynamoDB local is running locally, listening on port 8000 by default.

2.13 Signals

Starting with PynamoDB 3.1.0, there is support for signalling. This support is provided by the blinker library, which
is not installed by default. In order to ensure blinker is installed, specify your PynamoDB requirement like so:

pynamodb[signals]==<YOUR VERSION NUMBER>

Signals allow certain senders to notify subscribers that something happened. PynamoDB currently sends signals before
and after every DynamoDB API call.

Note

It is recommended to avoid business logic in signal callbacks, as this can have performance implications. To
reinforce this, only the operation name and table name are available in the signal callback.

2.13.1 Subscribing to Signals

PynamoDB fires two signal calls, pre_dynamodb_send before the network call and post_dynamodb_send after the
network call to DynamoDB.

The callback must taking the following arguments:

Arguments Description

sender The object that fired that method.

operation_name The string name of the DynamoDB action

table_name The name of the table the operation is called upon.

req_uuid A unique identifier so subscribers can correlate the before and after events.

To subscribe to a signal, the user needs to import the signal object and connect your callback, like so.

from pynamodb.signals import pre_dynamodb_send, post_dynamodb_send

def record_pre_dynamodb_send(sender, operation_name, table_name, req_uuid):
pre_recorded. append((operation_name, table_name, req_uuid))

def record_post_dynamodb_send(sender, operation_name, table_name, req_uuid):
post_recorded. append((operation_name, table_name, req_uuid))
(continues on next page)

38 Chapter 2. Topics

https://www.java.com/en/
https://pypi.org/project/blinker/

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

pre_dynamodb_send. connect (record_pre_dynamodb_send)
post_dynamodb_send. connect (record_post_dynamodb_send)

2.14 PynamoDB Examples

A directory of examples is available with the PynamoDB source on GitHub. The examples are configured to use
http://localhost: 8000 as the DynamoDB endpoint. For information on how to run DynamoDB locally, see Use
PynamoDB Locally.

Note

You should read the examples before executing them. They are configured to use http://localhost: 8000 by
default, so that you can run them without actually consuming DynamoDB resources on AWS, and therefore not
costing you any money.

2.14.1 Install PynamoDB

Although you can install & run PynamoDB from GitHub, it’s best to use a released version from PyPI:

$ pip install pynamodb

2.14.2 Getting the examples

You can clone the PynamoDB repository to get the examples:

$ git clone https://github.com/pynamodb/PynamoDB.git

2.14.3 Running the examples

Go into the examples directory:

$ cd pynamodb/examples

2.14.4 Configuring the examples

Each example is configured to use http://localhost:8000 as the DynamoDB endpoint. You’'ll need to edit an
example and either remove the host setting (causing PynamoDB to use a default), or specify your own.

2.14.5 Running an example

Each example file can be executed as a script by a Python interpreter:

$ python model.py

2.15 Settings

2.15.1 Settings reference

Here is a complete list of settings which control default PynamoDB behavior.

2.14. PynamoDB Examples 39

https://github.com/pynamodb/PynamoDB/tree/master/examples

PynamoDB Documentation, Release 6.0.2

connect_timeout_seconds
Default: 15

The time in seconds till a ConnectTimeoutError is thrown when attempting to make a connection.

read_timeout_seconds
Default: 30

The time in seconds till a ReadTimeoutError is thrown when attempting to read from a connection.

max_retry_attempts

Default: 3

The number of times to retry certain failed DynamoDB API calls. The most common cases eligible for retries include
ProvisionedThroughputExceededException and 5xx errors.

region

Default: "us-east-1"

The default AWS region to connect to.

max_pool_connections
Default: 10

The maximum number of connections to keep in a connection pool.

extra_headers

Default: None

A dictionary of headers that should be added to every request. This is only useful when interfacing with DynamoDB
through a proxy, where headers are stripped by the proxy before forwarding along. Failure to strip these headers before
sending to AWS will result in an InvalidSignatureException due to request signing.

host

Default: automatically constructed by boto to account for region

The URL endpoint for DynamoDB. This can be used to use a local implementation of DynamoDB such as DynamoDB
Local or dynalite.

2.15.2 Overriding settings

Default settings may be overridden by providing a Python module which exports the desired new values. Set
the PYNAMODB_CONFIG environment variable to an absolute path to this module or write it to /etc/pynamodb/
global_default_settings.py to have it automatically discovered.

2.16 Low Level API

PynamoDB was designed with high level features in mind, but includes a fully featured low level API. Any operation
can be performed with the low level API, and the higher level PynamoDB features were all written on top of it.

40 Chapter 2. Topics

PynamoDB Documentation, Release 6.0.2

2.16.1 Creating a connection

Creating a connection is simple:

from pynamodb.connection import Connection

conn = Connection()

You can specify a different DynamoDB url:

conn = ConnectionChost="http://alternative-domain/")

By default, PynamoDB will connect to the us-east-1 region, but you can specify a different one.

conn = Connection(region='us-west-1")

2.16.2 Modifying tables

You can easily list tables:

>>> conn.list_tables()
{u'TableNames': [u'Thread']}

or delete a table:

>>> conn.delete_table('Thread"')

If you want to change the capacity of a table, that can be done as well:

>>> conn.update_table('Thread', read_capacity_units=20, write_capacity_units=20)

You can create tables as well, although the syntax is verbose. You should really use the model API instead, but here is

a low level example to demonstrate the point:

kwargs = {
'write_capacity_units': 1,
'read_capacity_units': 1
'attribute_definitions': [

{
'attribute_type': 'S',
'attribute_name': 'keyl'
e
{
'attribute_type': 'S',
'attribute_name': 'key2'
}
1,
'key_schema': [
{
'key_type': 'HASH',
'attribute_name': 'keyl'
b
{

'key_type': 'RANGE',
'attribute_name': 'key2'

(continues on next page)

2.16. Low Level API

41

PynamoDB Documentation, Release 6.0.2

(continued from previous page)

]
}

conn.create_table('table_name', **kwargs)

You can also use update_table to change the Provisioned Throughput capacity of Global Secondary Indexes:

>>> kwargs = {
'global_secondary_index_updates': [

{
'index_name': 'index_name',
'read_capacity_units': 10,
'write_capacity_units': 10
3
]
}
>>> conn.update_table('table_name', **kwargs)

2.16.3 Modifying items

The low level API can perform item operations too, such as getting an item:

conn.get_item('table_name', 'hash_key', 'range_key')

You can put items as well, specifying the keys and any other attributes:

conn.put_item('table_name', 'hash_key', 'range_key', attributes={'key': 'value'})

Deleting an item has similar syntax:

conn.delete_item('table_name', 'hash_key', 'range_key')

2.17 AWS Access

PynamoDB uses botocore to interact with the DynamoDB API. Thus, any method of configuration sup-
ported by botocore works with PynamoDB. For local development the use of environment variables such as
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY is probably preferable. You can of course use IAM users,
as recommended by AWS. In addition EC2 roles will work as well and would be recommended when running on EC2.

As for the permissions granted via IAM, many tasks can be carried out by PynamoDB. So you should construct your
policies as required, see the DynamoDB docs for more information.

If for some reason you can’t use conventional AWS configuration methods, you can set the credentials in the Model
Meta class:

from pynamodb.models import Model

class MyModel (Model):

class Meta:
aws_access_key_id = 'my_access_key_id'
aws_secret_access_key = 'my_secret_access_key'
aws_session_token = 'my_session_token' # Optional, only for temporary..

—credentials like those received when assuming a role

42 Chapter 2. Topics

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/authentication-and-access-control.html

PynamoDB Documentation, Release 6.0.2

Finally, see the AWS CLI documentation for more details on how to pass credentials to botocore.

2.18 Logging

Logging in PynamoDB uses the standard Python logging facilities. PynamoDB is built on top of botocore which
also uses standard Python logging facilities. Logging is quite verbose, so you may only wish to enable it for debugging
purposes.

Here is an example showing how to enable logging for PynamoDB:

import logging

from pynamodb.models import Model

from pynamodb.attributes import (
UnicodeAttribute, NumberAttribute

)

logging.basicConfig()

log = logging.getLogger("pynamodb™)
log.setLevel (logging.DEBUG)
log.propagate = True

class Thread(Model):
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttributeChash_key=True)
subject = UnicodeAttribute(range_key=True)
views = NumberAttribute(default=0)

Scan
for item in Thread.scan():
print (item)

2.19 Contributing

Pull requests are welcome, forking from the master branch. If you are new to GitHub, be sure and check out GitHub’s
Hello World tutorial.
2.19.1 Environment Setup

You’ll need a python3 installation and a virtualenv. There are many ways to manage virtualenvs, but a minimal example
is shown below.

$ virtualenv -p python3 venv & source venv/bin/activate
$ pip install -e .[signals] -r requirements-dev.txt

A java runtime is required to run the integration tests. After installing java, download and untar the mock dynamodb
server like so:

$ wget --quiet http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_
—.latest.tar.gz -0 /tmp/dynamodb_local_latest.tar.gz
$ tar -xzf /tmp/dynamodb_local_latest.tar.gz -C /tmp

Note that you may want to place files somewhere other than /tmp.

2.18. Logging 43

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.github.com/en/get-started/quickstart/hello-world

PynamoDB Documentation, Release 6.0.2

2.19.2 Running Tests

After installing requirements in environment setup and ensuring your venv is activated, unit tests are run with:

$ pytest tests/ -k "not ddblocal"

There are also a set of integration tests that require a local dynamodb server to be mocked.

$ java -Djava.library.path=/tmp/DynamoDBLocal_lib -jar /tmp/DynamoDBLocal.jar -inMemory -
—port 8000
$ pytest tests/ # in another window

2.19.3 Backwards Compatibility

Particular care should be paid to backwards compatibility when making any change in PynamoDB, especially with
attributes and serialization/deserialization. Consider data written with an older version of the library and whether it
can still be read after upgrading.

Where possible, write logic to continue supporting older data for at least one major version to simplify the upgrade
path. Where that’s not possible, create a new version of the attribute with a different name and mark the old one as
deprecated.

Outside of data compatibility, follow the usual semver rules for API changes and limit breaking changes to a major
release.

2.19.4 The Scope of the Library

The purpose of this library is to provide a Pythonic ODM layer on top of DynamoDB to be used in server applications’
runtime, i.e. to enable their various application logic and features. While striving for the library to be useful, we’re
also trying to “do one thing well”. For this reason:

» Database administration tasks are out of scope, and while PynamoDB has functions for operations like Cre-
ateTable, CreateIndex and DeleteTable, it’s because they are useful for interacting with dynamodb-local and
moto’s DynamoDB backend from within test code.

For this reason, features such as enabling PITR backups, restoring from such backups, updating indices, etc. are
intentionally absent. For getting started and operating on a small scale, AWS Console and the AWS Command
Line Interface (awscli) can be used. For larger scale, infrastructure provisioning by dedicated tools (such as
CloudFormation or Terraform) would be vastly preferable over anything PynamoDB could offer.

Per security best practices, we recommend running your application’s runtime with an IAM role having the least
privileges necessary for it to function (which likely excludes any database administration operations).

e While the library aims to empower application developers, it steers away from high-level features which are
not specific to DynamoDB. For example, a custom attribute which serializes UUIDs as strings is doubtlessly
something many applications have had a need for, but as long as it doesn’t exercise any core DynamoDB func-
tionality (e.g. in the case of a UUID attribute, there isn’t a dedicated DynamoDB data type or API feature for
storing UUIDs), we would recommend relegating such functionality to auxiliary libraries. One such library is
pynamodb-attributes.

2.19.5 Pull Requests
Pull requests should:
1. Specify an accurate title and detailed description of the change
2. Include thorough testing. Unit tests at a minimum, sometimes integration tests

3. Add test coverage for new code (CI will verify the delta)

44 Chapter 2. Topics

https://github.com/lyft/pynamodb-attributes

PynamoDB Documentation, Release 6.0.2

4. Add type annotations to any code modified
5. Write documentation for new features

6. Maintain the existing code style (mostly PEP8) and patterns

2.19.6 Changelog

Any non-trivial change should be documented in the release notes. Please include sufficient detail in the PR description,
which will be used by maintainers to populate the release notes.

2.19.7 Documentation

Docs are built using sphinx and the latest are available on readthedocs. A release of the latest tag (tracking master)
happens automatically on merge via a GitHub webhook.

2.20 Release Notes

2.20.1 v6.0.2

Fixes:

* Fix a warning about datetime.utcfromtimestamp deprecation (#1261)

2.20.2 v6.0.1

Features:

* For failed transaction, return the underlying item in cancellation_reasons[...].raw_item (#1226). This
only applies when passing return_values=ALL_OLD.

Fixes:

* Fixing (#1242) regression to the extra_headers feature. These headers are intended for proxies that strip them,
so they should be excluded from the AWS signature.

2.20.3 v6.0.0

This is a major release and contains breaking changes. Please read the notes below carefully.
Breaking changes:
e BinaryAttribute and BinarySetAttribute have undergone breaking changes:

— The attributes’ internal encoding has changed. To prevent this change going unnoticed, a new required
legacy_encoding parameter was added: see upgrading_binary for details. If your codebase uses
BinaryAttribute or BinarySetAttribute, go over the attribute declarations and mark them accord-
ingly.

— When using binary attributes, the return value of serialize () will no longer be JSON-serializable since
it will contain bytes objects. Use to_dynamodb_dict () and to_simple_dict () for JSON-serializable
mappings. for a safe JSON-serializable representation.

* Python 3.6 is no longer supported.

e PynamoDB no longer has a default AWS region (used to be us-east-1) (#1003). If needed, update your models’
Meta or set the AWS_DEFAULT _REGION environment variable.

* Model’s JSON serialization helpers were changed:

2.20. Release Notes 45

https://pynamodb.readthedocs.io/en/latest/release_notes.html
https://www.sphinx-doc.org/
https://pynamodb.readthedocs.io/en/latest/
https://github.com/pynamodb/pynamodb/pull/1261
https://github.com/pynamodb/pynamodb/pull/1226
https://github.com/pynamodb/pynamodb/pull/1242
https://github.com/pynamodb/pynamodb/pull/1003

PynamoDB Documentation, Release 6.0.2

— to_json was renamed to to_simple_dict() (#1126). Additionally, to_dynamodb_dict() and
from_dynamodb_dict () were added for round-trip JSON serialization.

— pynamodb.util.attribute_value_to_json was removed (#1126)

e Attribute’s default parameter must be either an immutable value (of one of the built-in immutable types)
or a callable. This prevents a common class of errors caused by unintentionally mutating the default value. A
simple workaround is to pass an initializer (e.g. change default={} to default=dict) or wrap in a lambda
(e.g. change default={"foo': 'bar'}todefault=lambda: {'foo': 'bar'}).

e count (), query(), and scan() are now instance methods.
¢ OperationSettings has been removed.
Major changes:
* We are now compatible with opentelemetry botocore instrumentation.

* We’ve reduced our usage of botocore private APIs (#1079). On multiple occasions, new versions of botocore
broke PynamoDB, and this change lessens the likelihood of that happening in the future by reducing (albeit not
eliminating) our reliance on private botocore APIs.

Minor changes:

* save(), update(), delete_item(), and delete () now accept a add_version_con