
wrapt Documentation
Release 1.13.0rc2

Graham Dumpleton

Jul 19, 2024

CONTENTS

1 Overview 3

2 Documentation 5

3 Presentations 61

4 Blog Posts 63

5 Installation 65

6 Source Code 67

i

ii

wrapt Documentation, Release 1.13.0rc2

A Python module for decorators, wrappers and monkey patching.

CONTENTS 1

wrapt Documentation, Release 1.13.0rc2

2 CONTENTS

CHAPTER

ONE

OVERVIEW

The aim of the wrapt module is to provide a transparent object proxy for Python, which can be used as the basis for
the construction of function wrappers and decorator functions.

An easy to use decorator factory is provided to make it simple to create your own decorators that will behave correctly
in any situation they may be used.

import wrapt

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@pass_through
def function():

pass

In addition to the support for creating object proxies, function wrappers and decorators, the module also provides a
post import hook mechanism and other utilities useful in performing monkey patching of code.

The wrapt module focuses very much on correctness. It therefore goes way beyond existing mechanisms such as
functools.wraps() to ensure that decorators preserve introspectability, signatures, type checking abilities etc. The
decorators that can be constructed using this module will work in far more scenarios than typical decorators and provide
more predictable and consistent behaviour.

To ensure that the overhead is as minimal as possible, a C extension module is used for performance critical components.
An automatic fallback to a pure Python implementation is also provided where a target system does not have a compiler
to allow the C extension to be compiled.

3

wrapt Documentation, Release 1.13.0rc2

4 Chapter 1. Overview

CHAPTER

TWO

DOCUMENTATION

2.1 Getting Started

To implement your decorator you need to first define a wrapper function. This will be called each time a decorated
function is called. The wrapper function needs to take four positional arguments:

� wrapped - The wrapped function which in turns needs to be called by your wrapper function.

� instance - The object to which the wrapped function was bound when it was called.

� args - The list of positional arguments supplied when the decorated function was called.

� kwargs - The dictionary of keyword arguments supplied when the decorated function was called.

The wrapper function would do whatever it needs to, but would usually in turn call the wrapped function that is passed
in via the wrapped argument.

The decorator @wrapt.decorator then needs to be applied to the wrapper function to convert it into a decorator which
can in turn be applied to other functions.

import wrapt

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@pass_through
def function():

pass

If you wish to implement a decorator which accepts arguments, then wrap the definition of the decorator in a function
closure. Any arguments supplied to the outer function when the decorator is applied, will be available to the inner
wrapper when the wrapped function is called.

import wrapt

def with_arguments(myarg1, myarg2):
@wrapt.decorator
def wrapper(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)
return wrapper

@with_arguments(1, 2)
(continues on next page)

5

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

def function():
pass

When applied to a normal function or static method, the wrapper function when called will be passed None as the
instance argument.

When applied to an instance method, the wrapper function when called will be passed the instance of the class the
method is being called on as the instance argument. This will be the case even when the instance method was called
explicitly via the class and the instance passed as the first argument. That is, the instance will never be passed as part
of args.

When applied to a class method, the wrapper function when called will be passed the class type as the instance
argument.

When applied to a class, the wrapper function when called will be passed None as the instance argument. The
wrapped argument in this case will be the class.

The above rules can be summarised with the following example.

import inspect

@wrapt.decorator
def universal(wrapped, instance, args, kwargs):

if instance is None:
if inspect.isclass(wrapped):

Decorator was applied to a class.
return wrapped(*args, **kwargs)

else:
Decorator was applied to a function or staticmethod.
return wrapped(*args, **kwargs)

else:
if inspect.isclass(instance):

Decorator was applied to a classmethod.
return wrapped(*args, **kwargs)

else:
Decorator was applied to an instancemethod.
return wrapped(*args, **kwargs)

Using these checks it is therefore possible to create a universal decorator that can be applied in all situations. It is no
longer necessary to create different variants of decorators for normal functions and instance methods, or use additional
wrappers to convert a function decorator into one that will work for instance methods.

In all cases, the wrapped function passed to the wrapper function is called in the same way, with args and kwargs
being passed. The instance argument doesn’t need to be used in calling the wrapped function.

6 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.2 Function Decorators

The wrapt module provides various components, but the main reason that it would be used is for creating decorators.
This document covers the creation of decorators and all the information needed to cover what you can do within the
wrapper function linked to your decorator.

2.2.1 Creating Decorators

To implement your decorator you need to first define a wrapper function. This will be called each time a decorated
function is called. The wrapper function needs to take four positional arguments:

� wrapped - The wrapped function which in turns needs to be called by your wrapper function.

� instance - The object to which the wrapped function was bound when it was called.

� args - The list of positional arguments supplied when the decorated function was called.

� kwargs - The dictionary of keyword arguments supplied when the decorated function was called.

The wrapper function would do whatever it needs to, but would usually in turn call the wrapped function that is passed
in via the wrapped argument.

The decorator @wrapt.decorator then needs to be applied to the wrapper function to convert it into a decorator which
can in turn be applied to other functions.

import wrapt

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@pass_through
def function():

pass

2.2.2 Decorators With Arguments

If you wish to implement a decorator which accepts arguments, then you can wrap the definition of the decorator in a
function closure. Any arguments supplied to the outer function when the decorator is applied, will be available to the
inner wrapper when the wrapped function is called.

import wrapt

def with_arguments(myarg1, myarg2):
@wrapt.decorator
def wrapper(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)
return wrapper

@with_arguments(1, 2)
def function():

pass

If using Python 3, you can use the keyword arguments only syntax to force use of keyword arguments when the decorator
is used.

2.2. Function Decorators 7

wrapt Documentation, Release 1.13.0rc2

import wrapt

def with_keyword_only_arguments(*, myarg1, myarg2):
@wrapt.decorator
def wrapper(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)
return wrapper

@with_keyword_only_arguments(myarg1=1, myarg2=2)
def function():

pass

An alternative approach to using a function closure to allow arguments is to use a class, where the wrapper function is
the __call__() method of the class.

import wrapt

class with_arguments(object):

def __init__(self, myarg1, myarg2):
self.myarg1 = myarg1
self.myarg2 = myarg2

@wrapt.decorator
def __call__(self, wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@with_arguments(1, 2)
def function():

pass

In this case the wrapper function should also accept a self argument as is normal for instance methods of a class. The
arguments to the decorator would then be accessed by the wrapper function from the class instance created when the
decorator was applied to the target function, via the self argument.

Using a class in this way has the added benefit that other functions can be associated with the class providing for better
encapsulation. The alternative would have been to have the class be separate and use it in conjunction with a function
closure, where the class instance would have been created as a local variable within the outer function when called.

2.2.3 Decorators With Optional Arguments

Although opinion can be mixed about whether the pattern is a good one, if the decorator arguments all have default
values, it is also possible to implement decorators which have optional arguments. This allows the decorator to be
applied with or without the arguments, with the brackets being able to be dropped in the latter.

import wrapt

def with_optional_arguments(wrapped=None, myarg1=1, myarg2=2):
if wrapped is None:

return functools.partial(with_optional_arguments,
myarg1=myarg1, myarg2=myarg2)

@wrapt.decorator
(continues on next page)

8 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

def wrapper(wrapped, instance, args, kwargs):
return wrapped(*args, **kwargs)

return wrapper(wrapped)

@with_optional_arguments(myarg1=1, myarg2=2)
def function():

pass

@with_optional_arguments
def function():

pass

For this to be used in this way, it is a requirement that the decorator arguments be supplied as keyword arguments.

If using Python 3, the requirement to use keyword only arguments can again be enforced using the keyword only
argument syntax.

import wrapt

def with_optional_arguments(wrapped=None, *, myarg1=1, myarg2=2):
if wrapped is None:

return functools.partial(with_optional_arguments,
myarg1=myarg1, myarg2=myarg2)

@wrapt.decorator
def wrapper(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

return wrapper(wrapped)

2.2.4 Processing Function Arguments

The original set of positional arguments and keyword arguments supplied when the decorated function is called will
be passed in the args and kwargs arguments.

Note that these are always passed as their own unique arguments and are not broken out and bound in any way to the
decorator wrapper arguments. In other words, the decorator wrapper function signature must always be:

@wrapt.decorator
def my_decorator(wrapped, instance, args, kwargs): # CORRECT

return wrapped(*args, **kwargs)

You cannot use:

@wrapt.decorator
def my_decorator(wrapped, instance, *args, **kwargs): # WRONG

return wrapped(*args, **kwargs)

nor can you specify actual named arguments to which args and kwargs would be bound.

2.2. Function Decorators 9

wrapt Documentation, Release 1.13.0rc2

@wrapt.decorator
def my_decorator(wrapped, instance, arg1, arg2): # WRONG

return wrapped(arg1, arg2)

Separate arguments are used and no binding performed to avoid the possibility of name collisions between the argu-
ments passed to a decorated function when called, and the names used for the wrapped and instance arguments. This
can happen for example were wrapped and instance also used as keyword arguments by the wrapped function.

If needing to modify certain arguments being supplied to the decorated function when called, you will thus need to
trigger binding of the arguments yourself. This can be done using a nested function which in turn then calls the wrapped
function:

@wrapt.decorator
def my_decorator(wrapped, instance, args, kwargs):

def _execute(arg1, arg2, *_args, **_kwargs):

Do something with arg1 and arg2 and then pass the
modified values to the wrapped function. Use �args�
and �kwargs� on the nested function to mop up any
unexpected or non required arguments so they can
still be passed through to the wrapped function.

return wrapped(arg1, arg2, *_args, **_kwargs)

return _execute(*args, **kwargs)

If you do not need to modify the arguments being passed through to the wrapped function, but still need to extract them
so as to log them or otherwise use them as input into some process you could instead use.

@wrapt.decorator
def my_decorator(wrapped, instance, args, kwargs):

def _arguments(arg1, arg2, *args, **kwargs):
return (arg1, arg2)

arg1, arg2 = _arguments(*args, **kwargs)

Do something with arg1 and arg2 but still pass through
the original arguments to the wrapped function.

return wrapped(*args, **kwargs)

You should not simply attempt to extract positional arguments from args directly because this will fail if those posi-
tional arguments were actually passed as keyword arguments, and so were passed in kwargswith args being an empty
tuple.

Note that in either case, the argument names used in the decorated function would need to match the names mapped
by the wrapper function. This is a restriction which would need to be documented for the specific decorator to ensure
that users do not use arbitrary argument names which do not match.

10 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.2.5 Enabling/Disabling Decorators

A problem with using decorators is that once added into code, the actions of the wrapper function cannot be readily
disabled. The use of the decorator would have to be removed from the code, or the specific wrapper function imple-
mented in such a way as to check itself a flag indicating whether it should do what is required, or simply call the original
wrapped function without doing anything.

To make the task of enabling/disabling the actions of a wrapper function easier, such functionality is built in to
wrapt.decorator. The feature operates at a couple of levels, but in all cases, the enabled option is used to wrapt.
decorator. This must be supplied as a keyword argument and cannot be supplied as a positional argument.

In the first way in which this enabling feature can work, if it is supplied a boolean value, then it will immediately control
whether a wrapper is applied around the function that the decorator was in turn applied to.

In other words, where the enabled option was True, then the decorator will still be applied to the target function and
will operate as normal.

ENABLED = True

@wrapt.decorator(enabled=ENABLED)
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@pass_through
def function():

pass

>>> type(function)
<type �FunctionWrapper�>

If however the enabled option was False, then no wrapper is added to the target function and the original function
returned instead.

ENABLED = False

@wrapt.decorator(enabled=ENABLED)
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@pass_through
def function():

pass

>>> type(function)
<type �function�>

In this scenario, as no wrapper is applied there is no runtime overhead at the point of call when the decorator had been
disabled. This therefore provides a convenient way of globally disabling a specific decorator without having to remove
all uses of the decorator, or have a special variant of the decorator function.

2.2. Function Decorators 11

wrapt Documentation, Release 1.13.0rc2

2.2.6 Dynamically Disabling Decorators

Supplying a boolean value for the enabled option when defining a decorator provides control over whether the deco-
rator should be applied or not. This is therefore a global switch and once disabled it cannot be dynamically re-enabled
at runtime while the process is executing. Similarly, once enabled it cannot be disabled.

An alternative to supplying a literal boolean, is to provide a callable for enabled which will yield a boolean value.

def _enabled():
return True

@wrapt.decorator(enabled=_enabled)
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

When a callable function is supplied in this way, the callable will be invoked each time the decorated function is
called. If the callable returns True, indicating that the decorator is active, the wrapper function will then be called. If
the callable returns False however, the wrapper function will be bypassed and the original wrapped function called
directly.

If enabled is not None, nor a boolean, or a callable, then a boolean check will be done on the object supplied instead.
This allows one to use a custom object which supports logical operations. If the custom object evaluates as False the
wrapper function will again be bypassed.

2.2.7 Function Argument Specifications

To obtain the argument specification of a decorated function the standard getargspec() function from the inspect
module can be used.

@wrapt.decorator
def my_decorator(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@my_decorator
def function(arg1, arg2):

pass

>>> print(inspect.getargspec(function))
ArgSpec(args=[�arg1�, �arg2�], varargs=None, keywords=None, defaults=None)

If using Python 3, the getfullargspec() or signature() functions from the inspect module can also be used,
and would be required to be used if wanting the result to include any annotations.

In other words, applying a decorator created using @wrapt.decorator to a function is signature preserving and does
not result in the loss of the original argument specification as would occur when more simplistic decorator patterns are
used.

12 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.2.8 Wrapped Function Documentation

To obtain documentation for a decorated function which may be specified in a documentation string of the original
wrapped function, the standard Python help system can be used.

@wrapt.decorator
def my_decorator(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@my_decorator
def function(arg1, arg2):

"""Function documentation."""
pass

>>> help(function)
Help on function function in module __main__:

function(arg1, arg2)
Function documentation.

Just the documentation string itself can still be obtained by accessing the __doc__ attribute of the decorated function.

>>> print(function.__doc__)
Function documentation.

2.2.9 Wrapped Function Source Code

To obtain the source code of a decorated function the standard getsource() function from the inspect module can
be used.

@wrapt.decorator
def my_decorator(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@my_decorator
def function(arg1, arg2):

pass

>>> print(inspect.getsource(function))
@my_decorator
def function(arg1, arg2):

pass

As with signatures, the use of the decorator does not prevent access to the original source code for the wrapped function.

2.2. Function Decorators 13

wrapt Documentation, Release 1.13.0rc2

2.2.10 Signature Changing Decorators

When using inspect.getargspec() the argument specification for the original wrapped function is returned. If
however the decorator is a signature changing decorator, this is not going to be what is desired.

In this circumstance you can pass a dummy function to the decorator via the optional adapter argument. When this
is done, the argument specification will be sourced from the prototype for this dummy function.

def _my_adapter_prototype(arg1, arg2): pass

@wrapt.decorator(adapter=_my_adapter_prototype)
def my_adapter(wrapped, instance, args, kwargs):

"""Adapter documentation."""

def _execute(arg1, arg2, *_args, **_kwargs):

We actually multiply the first two arguments together
and pass that in as a single argument. The prototype
exposed by the decorator is thus different to that of
the wrapped function.

return wrapped(arg1*arg2, *_args, **_kwargs)

return _execute(*args, **kwargs)

@my_adapter
def function(arg):

"""Function documentation."""

pass

>>> help(function)
Help on function function in module __main__:

function(arg1, arg2)
Function documentation.

As it would not be accidental that you applied such a signature changing decorator to a function, it would normally
be the case that such usage would be explained within the documentation for the wrapped function. As such, the
documentation for the wrapped function is still what is used for the __doc__ string and what would appear when using
the Python help system. In the latter, the arguments required of the adapter would though instead appear.

If you need to generate the argument specification based on the function being wrapped dynamically, you can instead
pass a tuple of the form which is returned by inspect.getargspec() or inspect.getfullargspec(), or a string
of the form which is returned by inspect.formatargspec(). In these two cases the decorator will automatically
compile a stub function to use as the adapter. This eliminates the need for a caller to generate the stub function if
generating the signature on the fly.

Do note though that you should use inspect.getfullargspec() if wanting to have annotations preserved. In the
case of providing the signature as a string, if there are annotations they can only reference builtin Python types.

def argspec_factory(wrapped):
argspec = inspect.getfullargspec(wrapped)

args = argspec.args[1:]
(continues on next page)

14 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

defaults = argspec.defaults and argspec.defaults[-len(argspec.args):]

return inspect.ArgSpec(args, argspec.varargs,
argspec.keywords, defaults)

def session(wrapped):
@wrapt.decorator(adapter=argspec_factory(wrapped))
def _session(wrapped, instance, args, kwargs):

with transaction() as session:
return wrapped(session, *args, **kwargs)

return _session(wrapped)

This mechanism and the original mechanism to pass a function, require that the adapter function has to be created in
advance. If the adapter needs to be generated on demand for the specific function to be wrapped, then it is necessary
to use a closure around the definition of the decorator as above, such that the generator can be passed in.

As a convenience, instead of using such a closure, you can instead use:

def argspec_factory(wrapped):
argspec = inspect.getfullargspec(wrapped)

args = argspec.args[1:]
defaults = argspec.defaults and argspec.defaults[-len(argspec.args):]

return inspect.ArgSpec(args, argspec.varargs,
argspec.keywords, defaults)

@wrapt.decorator(adapter=wrapt.adapter_factory(argspec_factory))
def _session(wrapped, instance, args, kwargs):

with transaction() as session:
return wrapped(session, *args, **kwargs)

The result of wrapt.adapter_factory() will be recognised as indicating that the creation of the adapter is to be
deferred until the decorator is being applied to a function. The factory function for generating the adapter function or
specification on demand will be passed the function being wrapped by the decorator.

If wishing to create a library of routines for generating adapter functions or specifications dynamically, then you can do
so by creating classes which derive from wrapt.AdapterFactory as that is the type which is recognised as indicating
lazy evaluation of the adapter function. For example, wrapt.adapter_factory() is itself implemented as:

class DelegatedAdapterFactory(wrapt.AdapterFactory):
def __init__(self, factory):

super(DelegatedAdapterFactory, self).__init__()
self.factory = factory

def __call__(self, wrapped):
return self.factory(wrapped)

adapter_factory = DelegatedAdapterFactory

2.2. Function Decorators 15

wrapt Documentation, Release 1.13.0rc2

2.2.11 Decorating Functions

When applying a decorator to a normal function, the instance argument would always be None.

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@pass_through
def function(arg1, arg2):

pass

function(1, 2)

2.2.12 Decorating Instance Methods

When applying a decorator to an instance method, the instance argument will be the instance of the class on which
the instance method is called. That is, it would be the same as self passed as the first argument to the actual instance
method.

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

class Class(object):

@pass_through
def function_im(self, arg1, arg2):

pass

c = Class()

c.function_im(1, 2)

Class.function_im(c, 1, 2)

Note that the self argument is only passed via instance, it is not passed as part of args. Only the arguments
following on from the self argument will be a part of args.

When calling the wrapped function in the decorator wrapper function, the instance should never be passed explicitly
though. This is because the instance is already bound to wrapped and will be passed automatically as the first argument
to the original wrapped function.

This is even the situation where the instance method was called via the class type and the self pointer passed explicitly.
This is the case as the decorator identifies this specific case and adjusts instance and args so that the decorator
wrapper function does not see it as being any different to where it was called directly on the instance.

16 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.2.13 Decorating Class Methods

When applying a decorator to a class method, the instance argument will be the class type on which the class method
is called. That is, it would be the same as cls passed as the first argument to the actual class method.

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

class Class(object):

@pass_through
@classmethod
def function_cm(cls, arg1, arg2):

pass

Class.function_cm(1, 2)

Note that the cls argument is only passed via instance, it is not passed as part of args. Only the arguments following
on from the cls argument will be a part of args.

When calling the wrapped function in the decorator wrapper function, the instance should never be passed explicitly
though. This is because the instance is already bound to wrapped and will be passed automatically as the first argument
to the original wrapped function.

Note that due to a bug in classmethod.__get__() prior to Python 3.9, whereby it does not apply the descriptor pro-
tocol to the function wrapped by @classmethod, the above only applies where the decorator wraps the @classmethod
decorator. If the decorator is placed inside of the @classmethod decorator, then instancewill be None and the deco-
rator wrapper function will see the call as being the same as a normal function. As a result, always place any decorator
outside of the @classmethod decorator if needing the code to be portable to versions of Python older than Python 3.9.

2.2.14 Decorating Static Methods

When applying a decorator to a static method, the instance argument will be None. In other words, the decorator
wrapper function will not be able to distinguish a call to a static method from a normal function.

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

class Class(object):

@pass_through
@staticmethod
def function_sm(arg1, arg2):

pass

Class.function_sm(1, 2)

2.2. Function Decorators 17

wrapt Documentation, Release 1.13.0rc2

2.2.15 Decorating Classes

When applying a decorator to a class, the instance argument will be None. In order to distinguish this case from a
normal function call, inspect.isclass() should be used on wrapped to determine if it is a class type.

@wrapt.decorator
def pass_through(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@pass_through
class Class(object):

pass

c = Class()

Do note that whenever decorating a class, as you are replacing the aliased name for the class with a wrapper, it will
complicate use of the class in cases where the original type is required.

In particular, if using super(), it is necessary to supply the original type and the wrapper cannot be used. It will
therefore be necessary to use the __wrapped__ attribute to get access to the original type, as in:

@pass_through
class Class(BaseClass):

def __init__(self):
super(Class.__wrapped__, self).__init__()

In this case one could also use:

@pass_through
class Class(BaseClass):

def __init__(self):
BaseClass.__init__(self)

but in general, use of super() in conjunction with the __wrapped__ attribute to get access to the original type is still
recommended.

If using Python 3, the issue can be avoided by simply using the new magic super() calling convention whereby the
type and self argument are not required.

@pass_through
class Class(BaseClass):

def __init__(self):
super().__init__()

The need for the new magic super() in Python 3 was actually in part driven by this specific case where the class type
can have a decorator applied.

18 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.2.16 Universal Decorators

A universal decorator is one that can be applied to different types of functions and can adjust automatically based on
what is being decorated.

For example, the decorator may be able to be used on both a normal function and an instance method, thereby avoiding
the need to create two separate decorators to be used in each case.

A universal decorator can be created by observing what has been stated above in relation to the expected values/types
for wrapped and instance passed to the decorator wrapper function.

These rules can be summarised by the following.

import inspect

@wrapt.decorator
def universal(wrapped, instance, args, kwargs):

if instance is None:
if inspect.isclass(wrapped):

Decorator was applied to a class.
return wrapped(*args, **kwargs)

else:
Decorator was applied to a function or staticmethod.
return wrapped(*args, **kwargs)

else:
if inspect.isclass(instance):

Decorator was applied to a classmethod.
return wrapped(*args, **kwargs)

else:
Decorator was applied to an instancemethod.
return wrapped(*args, **kwargs)

To be truly robust, if a universal decorator is being applied in a scenario it does not support, it should raise a runtime
exception at the point it is called.

2.3 Proxies and Wrappers

Underlying the implementation of the decorators created by the wrapt module is a wrapper class which acts as a
transparent object proxy. This document describes the object proxy and the various custom wrappers provided.

2.3.1 Object Proxy

The object proxy class is available as wrapt.ObjectProxy. The class would not normally be used directly, but as a
base class to custom object proxies or wrappers which add behaviour which overrides that of the original object. When
an object proxy is used, it will pass through any actions performed on the proxy through to the wrapped object.

>>> table = {}
>>> proxy = wrapt.ObjectProxy(table)
>>> proxy[�key-1�] = �value-1�
>>> proxy[�key-2�] = �value-2�

>>> proxy.keys()
(continues on next page)

2.3. Proxies and Wrappers 19

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

[�key-2�, �key-1�]
>>> table.keys()
[�key-2�, �key-1�]

>>> isinstance(proxy, dict)
True

>>> dir(proxy)
[�__class__�, �__cmp__�, �__contains__�, �__delattr__�, �__delitem__�,
�__doc__�, �__eq__�, �__format__�, �__ge__�, �__getattribute__�,
�__getitem__�, �__gt__�, �__hash__�, �__init__�, �__iter__�, �__le__�,
�__len__�, �__lt__�, �__ne__�, �__new__�, �__reduce__�, �__reduce_ex__�,
�__repr__�, �__setattr__�, �__setitem__�, �__sizeof__�, �__str__�,
�__subclasshook__�, �clear�, �copy�, �fromkeys�, �get�, �has_key�,
�items�, �iteritems�, �iterkeys�, �itervalues�, �keys�, �pop�,
�popitem�, �setdefault�, �update�, �values�]

This ability for a proxy to stand in for the original goes as far as arithmetic operations, rich comparison and hashing.

>>> value = 1
>>> proxy = wrapt.ObjectProxy(value)

>>> proxy + 1
2

>>> int(proxy)
1
>>> hash(proxy)
1
>>> hash(value)
1

>>> proxy < 2
True
>>> proxy == 0
False

Do note however, that when wrapping an object proxy around a literal value, the original value is effectively copied
into the proxy object and any operation which updates the value will only update the value held by the proxy object.

>>> value = 1
>>> proxy = wrapt.ObjectProxy(value)
>>> type(proxy)
<type �ObjectProxy�>

>>> proxy += 1

>>> type(proxy)
<type �ObjectProxy�>

>>> print(proxy)
2

(continues on next page)

20 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

>>> print(value)
1

Object wrappers may therefore have limited use in conjunction with literal values.

2.3.2 Type Comparison

The type of an instance of the object proxy will be ObjectProxy, or that of any derived class type if creating a custom
object proxy.

>>> value = 1
>>> proxy = wrapt.ObjectProxy(value)
>>> type(proxy)
<type �ObjectProxy�>

>>> class CustomProxy(wrapt.ObjectProxy):
... pass

>>> proxy = CustomProxy(1)

>>> type(proxy)
<class �__main__.CustomProxy�>

Direct type comparisons in Python are generally frowned upon and allowance for ‘duck typing’ preferred. Instead of
direct type comparison, the isinstance() function would therefore be used. Using isinstance(), comparison of
the type of the object proxy will properly evaluate against the wrapped object.

>>> isinstance(proxy, int)
True

This works because the __class__ attribute actually returns the class type for the wrapped object.

>>> proxy.__class__
<type �int�>

Note that isinstance() will still also succeed if comparing to the ObjectProxy type. It is therefore still possible to
use isinstance() to determine if an object is an object proxy.

>>> isinstance(proxy, wrapt.ObjectProxy)
True

>>> class CustomProxy(wrapt.ObjectProxy):
... pass

>>> proxy = CustomProxy(1)

>>> isinstance(proxy, wrapt.ObjectProxy)
True
>>> isinstance(proxy, CustomProxy)
True

2.3. Proxies and Wrappers 21

wrapt Documentation, Release 1.13.0rc2

2.3.3 Custom Object Proxies

A custom proxy is where one creates a derived object proxy and overrides some specific behaviour of the proxy.

def function():
print(�executing�, function.__name__)

class CallableWrapper(wrapt.ObjectProxy):

def __call__(self, *args, **kwargs):
print(�entering�, self.__wrapped__.__name__)
try:

return self.__wrapped__(*args, **kwargs)
finally:

print(�exiting�, self.__wrapped__.__name__)

>>> proxy = CallableWrapper(function)

>>> proxy()
(�entering�, �function�)
(�executing�, �function�)
(�exiting�, �function�)

Any method of the original wrapped object can be overridden, including special Python methods such as __call__().
If it is necessary to change what happens when a specific attribute of the wrapped object is accessed, then properties
can be used.

If it is necessary to access the original wrapped object from within an overridden method or property, then self.
__wrapped__ is used.

2.3.4 Proxy Object Attributes

When an attempt is made to access an attribute from the proxy, the same named attribute would in normal circumstances
be accessed from the wrapped object. When updating an attributes value, or deleting the attribute, that change will also
be reflected in the wrapped object.

>>> proxy = CallableWrapper(function)

>>> hasattr(function, �attribute�)
False
>>> hasattr(proxy, �attribute�)
False

>>> proxy.attribute = 1

>>> hasattr(function, �attribute�)
True
>>> hasattr(proxy, �attribute�)
True

>>> function.attribute
1
>>> proxy.attribute
1

22 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

If an attribute was updated on the wrapped object directly, that change is still reflected in what is available via the proxy.

>>> function.attribute = 2

>>> function.attribute
2
>>> proxy.attribute
2

If creating a custom proxy and it needs to keep attributes of its own which should not be saved through to the wrapped
object, those attributes should be prefixed with _self_.

def function():
print(�executing�, function.__name__)

class CallableWrapper(wrapt.ObjectProxy):

def __init__(self, wrapped, wrapper):
super(CallableWrapper, self).__init__(wrapped)
self._self_wrapper = wrapper

def __call__(self, *args, **kwargs):
return self._self_wrapper(self.__wrapped__, args, kwargs)

def wrapper(wrapped, args, kwargs):
print(�entering�, wrapped.__name__)
try:

return wrapped(*args, **kwargs)
finally:

print(�exiting�, wrapped.__name__)

>>> proxy = CallableWrapper(function, wrapper)

>>> proxy._self_wrapper
<function wrapper at 0x1005961b8>

>>> function._self_wrapper
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: �function� object has no attribute �_self_wrapper�

If an attribute local to the proxy must be available under a name without this special prefix, then a @property can be
used in the class definition.

class CustomProxy(wrapt.ObjectProxy):

def __init__(self, wrapped):
super(CustomProxy, self).__init__(wrapped)
self._self_attribute = 1

@property
def attribute(self):

return self._self_attribute

(continues on next page)

2.3. Proxies and Wrappers 23

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

@attribute.setter
def attribute(self, value):

self._self_attribute = value

@attribute.deleter
def attribute(self):
del self._self_attribute

>>> proxy = CustomProxy(1)
>>> print proxy.attribute
1
>>> proxy.attribute = 2
>>> print proxy.attribute
2
>>> del proxy.attribute
>>> print proxy.attribute
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: �int� object has no attribute �attribute�

Alternatively, the attribute can be specified as a class attribute, with that then being overridden if necessary, with a
specific value in the __init__() method of the class.

class CustomProxy(wrapt.ObjectProxy):
attribute = None
def __init__(self, wrapped):

super(CustomProxy, self).__init__(wrapped)
self.attribute = 1

>>> proxy = CustomProxy(1)
>>> print proxy.attribute
1
>>> proxy.attribute = 2
>>> print proxy.attribute
2
>>> del proxy.attribute
>>> print proxy.attribute
None

Just be aware that although the attribute can be deleted from the instance of the custom proxy, lookup will then fallback
to using the class attribute.

2.3.5 Function Wrappers

Although an ObjectProxy can be used to wrap a function, it doesn’t do anything special in respect of bound methods.
If attempting to use a custom object proxy to wrap instance methods, class methods or static methods, it would be
necessary to override the appropriate descriptor protocol methods in order to be able to intercept and modify in any
way the execution of the wrapped function.

class BoundCallableWrapper(wrapt.ObjectProxy):

def __init__(self, wrapped, wrapper):
(continues on next page)

24 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

super(BoundCallableWrapper, self).__init__(wrapped)
self._self_wrapper = wrapper

def __get__(self, instance, owner):
return self

def __call__(self, *args, **kwargs):
return self._self_wrapper(self.__wrapped__, args, kwargs)

class CallableWrapper(wrapt.ObjectProxy):

def __init__(self, wrapped, wrapper):
super(CallableWrapper, self).__init__(wrapped)
self._self_wrapper = wrapper

def __get__(self, instance, owner):
function = self.__wrapped__.__get__(instance, owner)
return BoundCallableWrapper(function, self._self_wrapper)

def __call__(self, *args, **kwargs):
return self._self_wrapper(self.__wrapped__, args, kwargs)

The CallableWrapper.__call__() method would therefore be invoked when CallableWrapper is used around a
regular function. The BoundCallableWrapper.__call__() would instead be what is invoked for a bound method,
the instance of BoundCallableWrapper having being created when the original wrapped method was bound to the
class instance.

This specific pattern is actually the basis of what is required to implement a robust function wrapper for use
in implementing a decorator. Because it is a fundamental pattern, a predefined version is available as wrapt.
FunctionWrapper.

As with the illustrative example above, FunctionWrapper class accepts two key arguments:

� wrapped - The function being wrapped.

� wrapper - A wrapper function to be called when the wrapped function is invoked.

Although in prior examples the wrapper function was shown as accepting three positional arguments of the wrapped
function and the args and kwargs for when the wrapped function was called, when using FunctionWrapper, it is
expected that the wrapper function accepts four arguments. These are:

� wrapped - The wrapped function which in turns needs to be called by your wrapper function.

� instance - The object to which the wrapped function was bound when it was called.

� args - The list of positional arguments supplied when the decorated function was called.

� kwargs - The dictionary of keyword arguments supplied when the decorated function was called.

When FunctionWrapper is applied to a normal function or static method, the wrapper function when called will be
passed None as the instance argument.

When applied to an instance method, the wrapper function when called will be passed the instance of the class the
method is being called on as the instance argument. This will be the case even when the instance method was called
explicitly via the class and the instance passed as the first argument. That is, the instance will never be passed as part
of args.

When applied to a class method, the wrapper function when called will be passed the class type as the instance
argument.

2.3. Proxies and Wrappers 25

wrapt Documentation, Release 1.13.0rc2

When applied to a class, the wrapper function when called will be passed None as the instance argument. The
wrapped argument in this case will be the class.

The above rules can be summarised with the following example.

import inspect

def wrapper(wrapped, instance, args, kwargs):
if instance is None:

if inspect.isclass(wrapped):
Decorator was applied to a class.
return wrapped(*args, **kwargs)

else:
Decorator was applied to a function or staticmethod.
return wrapped(*args, **kwargs)

else:
if inspect.isclass(instance):

Decorator was applied to a classmethod.
return wrapped(*args, **kwargs)

else:
Decorator was applied to an instancemethod.
return wrapped(*args, **kwargs)

Using these checks it is therefore possible to create a universal function wrapper that can be applied in all situations.
It is no longer necessary to create different variants of function wrappers for normal functions and instance methods.

In all cases, the wrapped function passed to the wrapper function is called in the same way, with args and kwargs
being passed. The instance argument doesn’t need to be used in calling the wrapped function.

A simple decorator factory implementation which makes use of FunctionWrapper to delegate execution of the
wrapped function to the wrapper function would be:

def function_wrapper(wrapper):
@functools.wraps(wrapper)
def _wrapper(wrapped):

return FunctionWrapper(wrapped, wrapper)
return _wrapper

It would be used like:

@function_wrapper
def wrapper(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@wrapper
def function():

pass

This example of a simplified decorator factory is made available as wrapt.function_wrapper. Although it is usable
in its own right, it is preferable that wrapt.decorator be used to create decorators as it provides additional features.
The @function_wrapper decorator would generally be used more when performing monkey patching and needing to
dynamically create function wrappers.

@function_wrapper
def wrapper(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)
(continues on next page)

26 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

callback = wrapper(fetch_callback())

2.3.6 Custom Function Wrappers

If it is necessary to implement a custom function wrapper in order to override the behaviour of a wrapped function, it
is possible to still derive from the wrapt.FunctionWrapper class. That binding of functions can occur does however
complicate things. This is because the bound function is a separate object implemented as a different type.

The type of the separate bound function wrapper is wrapt.BoundFunctionWrapper. If the behaviour for the bound
function also needs to be overridden, a derived version of this class will also need to be created. The derived custom
function wrapper will then need to indicate that this second type should be used when creating the bound function
wrapper, rather than the default. This is done via the __bound_function_wrapper__ attribute of the class.

def custom_function_wrapper(attribute):

class CustomBoundFunctionWrapper(wrapt.BoundFunctionWrapper):

def __call__(self, *args, **kwargs):
if attribute:

...
return super(CustomBoundFunctionWrapper, self).__call__(*args, **kwargs)

class CustomFunctionWrapper(wrapt.FunctionWrapper):

__bound_function_wrapper__ = CustomBoundFunctionWrapper

def __call__(self, *args, **kwargs):
if attribute:

...
return super(CustomFunctionWrapper, self).__call__(*args, **kwargs)

return CustomFunctionWrapper

Note that to preserve the existing convention as to what arguments are accepted by the constructors of both wrapt.
FunctionWrapper and wrapt.BoundFunctionWrapper a function closure is used in this example, with the classes
defined within the closure. The benefit of this approach is that the custom function wrapper can then be used with
@wrapt.decorator, with the default use of FunctionWrapper being replaced with the custom function wrapper.

@wrapt.decorator(proxy=custom_function_wrapper("attribute"))
def wrapper(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

If it is necessary to set up instance variables on the function wrappers because the value needs to change over the
lifetime of that instance of the function wrapper, constructors can be defined to add the attributes on the instance, but
these should just pass all positional and keyword parameters as is through to the base class.

def custom_function_wrapper(attribute):

class CustomBoundFunctionWrapper(wrapt.BoundFunctionWrapper):

def __init__(self, *args, **kwargs):
(continues on next page)

2.3. Proxies and Wrappers 27

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

super(CustomBoundFunctionWrapper, self).__init(*args, **kwargs)
self._self_attribute = attribute

def __call__(self, *args, **kwargs):
if self._self_attribute:

...
return super(CustomBoundFunctionWrapper, self).__call__(*args, **kwargs)

class CustomFunctionWrapper(wrapt.FunctionWrapper):

__bound_function_wrapper__ = CustomBoundFunctionWrapper

def __init__(self, *args, **kwargs):
super(CustomFunctionWrapper, self).__init(*args, **kwargs)
self._self_attribute = attribute

def __call__(self, *args, **kwargs):
if self._self_attribute:

...
return super(CustomFunctionWrapper, self).__call__(*args, **kwargs)

return CustomFunctionWrapper

If the bound function wrapper needs to be able to access back to the parent function wrapper it was created from, it can
use self._self_parent.

def custom_function_wrapper(attribute):

class CustomBoundFunctionWrapper(wrapt.BoundFunctionWrapper):

def __call__(self, *args, **kwargs):
if self._self_parent._self_attribute:

...
return super(CustomBoundFunctionWrapper, self).__call__(*args, **kwargs)

class CustomFunctionWrapper(wrapt.FunctionWrapper):

__bound_function_wrapper__ = CustomBoundFunctionWrapper

def __init__(self, *args, **kwargs):
super(CustomFunctionWrapper, self).__init(*args, **kwargs)
self._self_attribute = attribute

def __call__(self, *args, **kwargs):
if self._self_attribute:

...
return super(CustomFunctionWrapper, self).__call__(*args, **kwargs)

return CustomFunctionWrapper

28 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.4 Assorted Examples

This document provides various examples of decorators often described elsewhere, to exhibit what can be done with
decorators using the wrapt module, for the purpose of comparison.

2.4.1 Thread Synchronization

Note: The final variant of the synchronized decorator described here is available within the wrapt package as
wrapt.synchronized.

Synchronization decorators are a simplified way of adding thread locking to functions, methods, instances of classes
or a class type. They work by associating a thread mutex with a specific context and when a function is called the lock
is acquired prior to the call and then released once the function returns.

The simplest example of a decorator for synchronization is one where the lock is explicitly provided when the decorator
is applied to a function. By being supplied explicitly, it is up to the user of the decorator to determine what context the
lock applies to. For example, a lock may be applied to a single function, a group of functions, or a class.

As the lock needs to be supplied when the decorator is applied to the function we need to use a function closure as a
means of supplying the argument to the decorator.

def synchronized(lock):
@wrapt.decorator
def _wrapper(wrapped, instance, args, kwargs):

with lock:
return wrapped(*args, **kwargs)

return _wrapper

import threading

lock = threading.RLock()

@synchronized(lock)
def function():

pass

class Class(object):

@synchronized(lock)
def function(self):

pass

Note that the recursive lock threading.RLock is used to ensure that recursive calls, or calls to another synchronized
function associated with the same lock, doesn’t cause a deadlock.

An alternative to requiring the lock be supplied when the decorator is applied to a function, is to associate a lock
automatically with the wrapped function. That is, rather than require the lock be passed in explicitly, create one on
demand and attach it to the wrapped function.

@wrapt.decorator
def synchronized(wrapped, instance, args, kwargs):

Retrieve the lock from the wrapped function.
(continues on next page)

2.4. Assorted Examples 29

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

lock = vars(wrapped).get(�_synchronized_lock�, None)

if lock is None:
There was no lock yet associated with the function so we
create one and associate it with the wrapped function.
We use ��dict.setdefault()�� as a means of ensuring that
only one thread gets to set the lock if multiple threads
do this at the same time. This may mean redundant lock
instances will get thrown away if there is a race to set
it, but all threads would still get back the same one lock.

lock = vars(wrapped).setdefault(�_synchronized_lock�,
threading.RLock())

with lock:
return wrapped(*args, **kwargs)

@synchronized
def function():

pass

This avoids the need for an instance of a lock to be passed in explicitly when the decorator is being applied to a function,
but it now means that all decorated methods of a class will have a distinct lock.

A more severe issue in both these approaches is that locks on each method work across all instances of the class where
as what we really want is a lock per instance of a class for all methods of the class decorated with the @synchronized
decorator.

To address this, we can use the fact that the decorator wrapper function is passed the instance and so can determine
when the function is being invoked on an instance of a class and that it is not a normal function call. In this case we
can associate the lock with the instance instead.

@wrapt.decorator
def synchronized(wrapped, instance, args, kwargs):

Use the instance as the context if function was bound.

if instance is not None:
context = vars(instance)

else:
context = vars(wrapped)

Retrieve the lock for the specific context.

lock = context.get(�_synchronized_lock�, None)

if lock is None:
There was no lock yet associated with the function so we
create one and associate it with the wrapped function.
We use ��dict.setdefault()�� as a means of ensuring that
only one thread gets to set the lock if multiple threads
do this at the same time. This may mean redundant lock
instances will get thrown away if there is a race to set

(continues on next page)

30 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

it, but all threads would still get back the same one lock.

lock = context.setdefault(�_synchronized_lock�,
threading.RLock())

with lock:
return wrapped(*args, **kwargs)

@synchronized
def function():

pass

Now we actually have two scenarios that match for where instance is not None. One will be where an instance method
is being called on a class, which is what we are targeting in this case. We will also have instance being a value other
than None for the case where a class method is called. For this case instance will be a reference to the class type.

Having the lock being associated with the class type for class methods is entirely reasonable, but a problem presents.
That is that vars(instance) where instance is a class type, actually returns a dictproxy and not a dict. As a
dictproxy is effectively read only, it is not possible to associate the lock with it.

A similar problem also occurs where instance is None but wrapped is a class type. That is, if the decorator was
applied to a class. The result is that the above technique will not work in these two cases.

The only way that it is possible to add attributes to a class type is to use setattr, either explicitly or via direct attribute
assignment. Although this allows us to add attributes to a class, there is no equivalent to dict.setdefault(), so we
loose the ability to add the attribute which will hold the lock atomically.

To get around this problem, we need to use an intermediary meta lock which gates the attempt to associate a lock
with a specific context. This meta lock itself still needs to be created somehow, so what we do now is use the dict.
setdefault() trick against the decorator itself and use it as the place to store the meta lock.

@wrapt.decorator
def synchronized(wrapped, instance, args, kwargs):

Use the instance as the context if function was bound.

if instance is not None:
context = instance

else:
context = wrapped

Retrieve the lock for the specific context.

lock = vars(context).get(�_synchronized_lock�, None)

if lock is None:
There is no existing lock defined for the context we
are dealing with so we need to create one. This needs
to be done in a way to guarantee there is only one
created, even if multiple threads try and create it at
the same time. We can�t always use the setdefault()
method on the __dict__ for the context. This is the
case where the context is a class, as __dict__ is
actually a dictproxy. What we therefore do is use a
meta lock on this wrapper itself, to control the

(continues on next page)

2.4. Assorted Examples 31

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

creation and assignment of the lock attribute against
the context.

meta_lock = vars(synchronized).setdefault(
�_synchronized_meta_lock�, threading.Lock())

with meta_lock:
We need to check again for whether the lock we want
exists in case two threads were trying to create it
at the same time and were competing to create the
meta lock.

lock = vars(context).get(�_synchronized_lock�, None)

if lock is None:
lock = threading.RLock()
setattr(context, �_synchronized_lock�, lock)

with lock:
return wrapped(*args, **kwargs)

This means lock creation is all automatic, with an appropriate lock created for the different contexts the decorator is
used in.

@synchronized # lock bound to function1
def function1():

pass

@synchronized # lock bound to function2
def function2():

pass

@synchronized # lock bound to Class
class Class(object):

@synchronized # lock bound to instance of Class
def function_im(self):

pass

@synchronized # lock bound to Class
@classmethod
def function_cm(cls):

pass

@synchronized # lock bound to function_sm
@staticmethod
def function_sm():

pass

Specifically, when the decorator is used on a normal function or static method, a unique lock will be associated with
each function. For the case of instance methods, the lock will be against the instance. Finally, for class methods and a
decorator against an actual class, the lock will be against the class type.

32 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

One requirement with this approach though is that only the execution of a whole function can be synchronized. In
Java where a similar mechanism exists, it is also possible to have synchronized statements. In Python one can emulate
synchronized statements by using the ‘with’ statement in conjunction with a lock. The trick with that is that if using
it within a method of a class, we want to be able to use the same lock as that which is being applied to synchronized
methods of the class. In effect we want to be able to do the following.

class Class(object):

@synchronized
def function_im_1(self):

pass

def function_im_2(self):
with synchronized(self):

pass

In other words we want the decorator function to serve a dual role of being able to decorate a function to make it
synchronized, but also return a context manager for the lock for a specific context so that it can be used with the ‘with’
statement.

Because of this dual requirement, we actually need to partly side step wrapt.decorator and drop down to using the
underlying FunctionWrapper class that it uses to implement decorators. Specifically, we need to create a derived
version of FunctionWrapper which converts it into a context manager, but at the same time can still be used as a
decorator as before.

def synchronized(wrapped):
def _synchronized_lock(context):

Attempt to retrieve the lock for the specific context.

lock = vars(context).get(�_synchronized_lock�, None)

if lock is None:
There is no existing lock defined for the context we
are dealing with so we need to create one. This needs
to be done in a way to guarantee there is only one
created, even if multiple threads try and create it at
the same time. We can�t always use the setdefault()
method on the __dict__ for the context. This is the
case where the context is a class, as __dict__ is
actually a dictproxy. What we therefore do is use a
meta lock on this wrapper itself, to control the
creation and assignment of the lock attribute against
the context.

meta_lock = vars(synchronized).setdefault(
�_synchronized_meta_lock�, Lock())

with meta_lock:
We need to check again for whether the lock we want
exists in case two threads were trying to create it
at the same time and were competing to create the
meta lock.

lock = vars(context).get(�_synchronized_lock�, None)
(continues on next page)

2.4. Assorted Examples 33

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

if lock is None:
lock = RLock()
setattr(context, �_synchronized_lock�, lock)

return lock

def _synchronized_wrapper(wrapped, instance, args, kwargs):
Execute the wrapped function while the lock for the
desired context is held. If instance is None then the
wrapped function is used as the context.

with _synchronized_lock(instance or wrapped):
return wrapped(*args, **kwargs)

class _FinalDecorator(FunctionWrapper):

def __enter__(self):
self._self_lock = _synchronized_lock(self.__wrapped__)
self._self_lock.acquire()
return self._self_lock

def __exit__(self, *args):
self._self_lock.release()

return _FinalDecorator(wrapped=wrapped, wrapper=_synchronized_wrapper)

When used in this way, the more typical use case would be to synchronize against the class instance, but if needing to
synchronize with the work of a class method from an instance method, it could also be done against the class itself.

class Class(object):

@synchronized
@classmethod
def function_cm(cls):

pass

def function_im(self):
with synchronized(Class):

pass

If wishing to have more than one normal function synchronize on the same object, then it is possible to have the
synchronization be against a data structure which they all manipulate.

class Data(object):
pass

data = Data()

def function_1():
with synchronized(data):

pass
(continues on next page)

34 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

def function_2():
with synchronized(data):

pass

In doing this you would be restricted to using a data structure to which new attributes can be added, such that the
hidden lock can be added. This means for example, you could not do this with a dictionary. It also means you can’t just
decorate the whole function.

What would perhaps be better is to return back to having the synchronized decorator allow an actual lock object to
be supplied when the decorator is being applied to a function. Being able to do this though would be optional and if
not done the lock would be associated with the appropriate context of the wrapped function.

lock = threading.RLock()

@synchronized(lock)
def function_1():

pass

@synchronized(lock)
def function_2():

pass

This requires what the decorator accepts to be overloaded and so may be frowned on by some, but the implementation
would be as follows.

def synchronized(wrapped):
Determine if being passed an object which is a synchronization
primitive. We can�t check by type for Lock, RLock, Semaphore etc,
as the means of creating them isn�t the type. Therefore use the
existence of acquire() and release() methods. This is more
extensible anyway as it allows custom synchronization mechanisms.

if hasattr(wrapped, �acquire�) and hasattr(wrapped, �release�):
We remember what the original lock is and then return a new
decorator which accesses and locks it. When returning the new
decorator we wrap it with an object proxy so we can override
the context manager methods in case it is being used to wrap
synchronized statements with a �with� statement.

lock = wrapped

@decorator
def _synchronized(wrapped, instance, args, kwargs):

Execute the wrapped function while the original supplied
lock is held.

with lock:
return wrapped(*args, **kwargs)

class _PartialDecorator(ObjectProxy):

def __enter__(self):
(continues on next page)

2.4. Assorted Examples 35

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

lock.acquire()
return lock

def __exit__(self, *args):
lock.release()

return _PartialDecorator(wrapped=_synchronized)

Following only apply when the lock is being created
automatically based on the context of what was supplied. In
this case we supply a final decorator, but need to use
FunctionWrapper directly as we want to derive from it to add
context manager methods in case it is being used to wrap
synchronized statements with a �with� statement.

def _synchronized_lock(context):
Attempt to retrieve the lock for the specific context.

lock = vars(context).get(�_synchronized_lock�, None)

if lock is None:
There is no existing lock defined for the context we
are dealing with so we need to create one. This needs
to be done in a way to guarantee there is only one
created, even if multiple threads try and create it at
the same time. We can�t always use the setdefault()
method on the __dict__ for the context. This is the
case where the context is a class, as __dict__ is
actually a dictproxy. What we therefore do is use a
meta lock on this wrapper itself, to control the
creation and assignment of the lock attribute against
the context.

meta_lock = vars(synchronized).setdefault(
�_synchronized_meta_lock�, Lock())

with meta_lock:
We need to check again for whether the lock we want
exists in case two threads were trying to create it
at the same time and were competing to create the
meta lock.

lock = vars(context).get(�_synchronized_lock�, None)

if lock is None:
lock = RLock()
setattr(context, �_synchronized_lock�, lock)

return lock

def _synchronized_wrapper(wrapped, instance, args, kwargs):
Execute the wrapped function while the lock for the

(continues on next page)

36 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

desired context is held. If instance is None then the
wrapped function is used as the context.

with _synchronized_lock(instance or wrapped):
return wrapped(*args, **kwargs)

class _FinalDecorator(FunctionWrapper):

def __enter__(self):
self._self_lock = _synchronized_lock(self.__wrapped__)
self._self_lock.acquire()
return self._self_lock

def __exit__(self, *args):
self._self_lock.release()

return _FinalDecorator(wrapped=wrapped, wrapper=_synchronized_wrapper)

As well as normal functions, this can be used with methods of classes as well. Because though the lock object has to be
available at the time the class definition is being created, it can only be used to refer to a lock which is the same across
the whole class, or one which is at global scope.

class Class(object):
lock1 = threading.RLock()
lock2 = threading.RLock()

@synchronized(lock1)
@classmethod
def function_cm_1(cls):

pass

@synchronized(lock1)
def function_im_1(self):

pass

@synchronized(lock2)
@classmethod
def function_cm_2(cls):

pass

The alternative is to use synchronized as a context manager and pass the lock in at that time.

class Class(object):

def __init__(self):
self.lock1 = threading.RLock()

def function_im(self):
with synchronized(self.lock1):

pass

This is actually the same as using the ‘with’ statement directly on the lock, but it you want to get carried away and have
all the code look more or less uniform, it is possible.

2.4. Assorted Examples 37

wrapt Documentation, Release 1.13.0rc2

One benefit of being able to pass the lock in explicitly, is that you can override the default lock type used, which
is threading.RLock. Any synchronization primitive can be supplied so long as it provides a acquire() and
release() method. This includes being able to pass in your own custom class objects with such methods which
do something appropriate.

semaphore = threading.Semaphore(2)

@synchronized(semaphore)
def function():

pass

2.5 Decorator Benchmarks

The wrapt module ensures that your decorators will work in all situations. The implementation therefore does not take
the shortcuts that people usually take with decorators of using function closures. Instead it implements the wrappers
as a class, which also acts as a descriptor. Ensuring correctness though does come at an additional cost in runtime
overhead. The following attempts to quantify what that overhead is and compare it to other solutions typically used.

Results were collected under MacOS X Mountain Lion on a 2012 model MacBook Pro, running with Python 2.7.

2.5.1 Undecorated Calls

These tests provide a baseline for comparing decorated functions against a normal undecorated function call.

Test Code:

def function1():
pass

class Class(object):

def function1(self):
pass

@classmethod
def function1cm(cls):

pass

@staticmethod
def function1sm():

pass

Test Results:

$ python -m timeit -s �import benchmarks� �benchmarks.function1()�
10000000 loops, best of 3: 0.132 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function1()�
10000000 loops, best of 3: 0.143 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function1cm()�
1000000 loops, best of 3: 0.217 usec per loop

(continues on next page)

38 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function1cm()�
10000000 loops, best of 3: 0.159 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function1sm()�
1000000 loops, best of 3: 0.199 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function1sm()�
10000000 loops, best of 3: 0.13 usec per loop

Note that differences between calling the class and static methods via the class vs the instance are possibly more to do
with needing to traverse the dotted path.

2.5.2 Function Closures

These tests provide results for decorated functions where the decorators are implemented using function closures.

Test Code:

def wrapper2(func):
def _wrapper2(*args, **kwargs):

return func(*args, **kwargs)
return _wrapper2

@wrapper2
def function2():

pass

class Class(object):

@wrapper2
def function2(self):

pass

@classmethod
@wrapper2
def function2cmi(cls):

pass

@staticmethod
@wrapper2
def function2smi():

pass

Test Results:

$ python -m timeit -s �import benchmarks� �benchmarks.function2()�
1000000 loops, best of 3: 0.326 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function2()�
1000000 loops, best of 3: 0.382 usec per loop

(continues on next page)

2.5. Decorator Benchmarks 39

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function2cmi()�
1000000 loops, best of 3: 0.46 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function2cmi()�
1000000 loops, best of 3: 0.384 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function2smi()�
1000000 loops, best of 3: 0.389 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function2smi()�
1000000 loops, best of 3: 0.319 usec per loop

Note that decorators implemented as function closures cannot be added around staticmethod and classmethod decora-
tors and must be added inside of those decorators.

2.5.3 wrapt.decorator

These tests provides results for decorated functions where the decorators are implemented using the wrapt module.
Separate results are provided for when using the C extension and when using the pure Python implementation.

Test Code:

@wrapt.decorator
def wrapper3(wrapped, instance, args, kwargs):

return wrapped(*args, **kwargs)

@wrapper3
def function3():

pass

class Class(object):

@wrapper3
def function3(self):

pass

@wrapper3
@classmethod
def function3cmo(cls):

pass

@classmethod
@wrapper3
def function3cmi(cls):

pass

@wrapper3
@staticmethod
def function3smo():

pass

@staticmethod
(continues on next page)

40 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

@wrapper3
def function3smi():

pass

Test Results (C Extension):

$ python -m timeit -s �import benchmarks� �benchmarks.function3()�
1000000 loops, best of 3: 0.382 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3()�
1000000 loops, best of 3: 0.836 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3cmo()�
1000000 loops, best of 3: 1.11 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3cmo()�
1000000 loops, best of 3: 1.06 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3cmi()�
1000000 loops, best of 3: 0.535 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3cmi()�
1000000 loops, best of 3: 0.455 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3smo()�
1000000 loops, best of 3: 1.37 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3smo()�
1000000 loops, best of 3: 1.31 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3smi()�
1000000 loops, best of 3: 0.453 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3smi()�
1000000 loops, best of 3: 0.378 usec per loop

Note that results for where the decorator is inside that of the classmethod decorator is quite a bit less than that where it is
outside. This due to a potential bug in Python whereby it doesn’t apply the descriptor protocol to what the classmethod
decorator wraps. Instead it is executing a straight function call, which has less overhead.

Test Results (Pure Python):

$ python -m timeit -s �import benchmarks� �benchmarks.function3()�
1000000 loops, best of 3: 0.771 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3()�
100000 loops, best of 3: 6.67 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3cmo()�
100000 loops, best of 3: 6.89 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3cmo()�
100000 loops, best of 3: 6.77 usec per loop

(continues on next page)

2.5. Decorator Benchmarks 41

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3cmi()�
1000000 loops, best of 3: 0.911 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3cmi()�
1000000 loops, best of 3: 0.863 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3smo()�
100000 loops, best of 3: 7.26 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3smo()�
100000 loops, best of 3: 7.17 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function3smi()�
1000000 loops, best of 3: 0.835 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function3smi()�
1000000 loops, best of 3: 0.774 usec per loop

Note that results for where the decorator is inside that of the classmethod decorator is quite a bit less than that where it is
outside. This due to a potential bug in Python whereby it doesn’t apply the descriptor protocol to what the classmethod
decorator wraps. Instead it is executing a straight function call, which has less overhead.

2.5.4 decorator.decorator

These tests provides results for decorated functions where the decorators are implemented using the decorator module
available from PyPi.

Test Code:

@decorator.decorator
def wrapper4(wrapped, *args, **kwargs):

return wrapped(*args, **kwargs)

@wrapper4
def function4():

pass

class Class(object):

@wrapper4
def function4(self):

pass

@classmethod
@wrapper4
def function4cmi(cls):

pass

@staticmethod
@wrapper4

(continues on next page)

42 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

def function4smi():
pass

Test Results:

$ python -m timeit -s �import benchmarks� �benchmarks.function4()�
1000000 loops, best of 3: 0.465 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function4()�
1000000 loops, best of 3: 0.537 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function4cmi()�
1000000 loops, best of 3: 0.606 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function4cmi()�
1000000 loops, best of 3: 0.533 usec per loop

$ python -m timeit -s �import benchmarks� �benchmarks.Class.function4smi()�
1000000 loops, best of 3: 0.532 usec per loop

$ python -m timeit -s �import benchmarks; c=benchmarks.Class()� �c.function4smi()�
1000000 loops, best of 3: 0.456 usec per loop

Note that decorators implemented using the decorator module cannot be added around staticmethod and classmethod
decorators and must be added inside of those decorators.

2.6 Running Unit Tests

Unit tests are located in the tests directory.

To test both the pure Python and C extension module based implementations, run the command:

tox

By default tests are run for Python 2.7, 3.5-3.9 and PyPy, with and without the C extensions.

py27-without-extensions
py35-without-extensions
py36-without-extensions
py37-without-extensions
py38-without-extensions
py39-without-extensions

py27-install-extensions
py35-install-extensions
py36-install-extensions
py37-install-extensions
py38-install-extensions
py39-install-extensions

py27-disable-extensions
(continues on next page)

2.6. Running Unit Tests 43

wrapt Documentation, Release 1.13.0rc2

(continued from previous page)

py35-disable-extensions
py36-disable-extensions
py37-disable-extensions
py38-disable-extensions
py39-disable-extensions

pypy-without-extensions

If wishing to run tests for a specific Python combination you can run tox with the -e option.

tox -e py39-install-extensions

If adding more tests and you need to add a test which is Python 2 or Python 3 specific, then end the name of the Python
code file as _py2.py or _py3.py appropriately.

For further options refer to the documentation for tox.

2.6.1 Coverage

Coverage is collected and sent to Coveralls when running the tests automatically in GitHub Actions. To collect and
view coverage results locally, here’s the sequence of commands:

tox
coverage combine
coverage html --ignore-errors

At this point there’s a directly called htmlcov with the formatted results.

2.7 Release Notes

2.7.1 Version 1.16.0

Note that version 1.16.0 drops support for Python 2.7 and 3.5. Python version 3.6 or later is required.

New Features

� The patch_function_wrapper() decorator now accepts an enabled argument, which can be a literal boolean
value, object that evaluates as boolean, or a callable object which returns a boolean. In the case of a callable,
determination of whether the wrapper is invoked will be left until the point of the call. In the other cases, the
wrapper will not be applied if the value evaluates false at the point of applying the wrapper.

Features Changed

� The import hook loader and finder objects are now implemented as transparent object proxies so they properly
proxy pass access to attributes/functions of the wrapped loader or finder.

� Code files in the implementation have been reorganized such that the pure Python version of the ObjectProxy
class is directly available even if the C extension variant is being used. This is to allow the pure Python variant
to be used in exceptional cases where the C extension variant is not fully compatible with the pure Python
implementation and the behaviour of the pure Python variant is what is required. This should only be relied
upon if have absolutely no choice. The pure Python variant is not as performant as the C extension.

To access the pure Python variant use from wrapt.wrappers import ObjectProxy instead of just from
wrapt import ObjectProxy. Note that prior to this version if you had used from wrapt.wrappers import

44 Chapter 2. Documentation

https://coveralls.io
https://github.com/GrahamDumpleton/wrapt/actions

wrapt Documentation, Release 1.13.0rc2

ObjectProxy you would have got the C extension variant of the class rather than the pure Python version if the
C extension variant was available.

Bugs Fixed

� It was not possible to update the __class__ attribute through the transparent object proxy when relying on the
C implementation.

2.7.2 Version 1.15.0

Bugs Fixed

� When the C extension for wrapt was being used, and a property was used on an object proxy wrapping another
object to intercept access to an attribute of the same name on the wrapped object, if the function implementing
the property raised an exception, then the exception was ignored and not propagated back to the caller. What
happened instead was that the original value of the attribute from the wrapped object was returned, thus silently
suppressing that an exception had occurred in the wrapper. This behaviour was not happening when the pure
Python version of wrapt was being used, with it raising the exception. The pure Python and C extension imple-
mentations thus did not behave the same.

Note that in the specific case that the exception raised is AttributeError it still wouldn’t be raised. This is the case
for both Python and C extension implementations. If a wrapper for an attribute internally raises an AttributeError
for some reason, the wrapper should if necessary catch the exception and deal with it, or propagate it as a different
exception type if it is important that an exception still be passed back.

� Address issue where the post import hook mechanism of wrapt wasn’t transparent and left the __loader__ and
__spec__.loader attributes of a module as the wrapt import hook loader and not the original loader. That the
original loader wasn’t preserved could interfere with code which needed access to the original loader.

� Address issues where a thread deadlock could occur within the wrapt module import handler, when code executed
from a post import hook created a new thread and code executed in the context of the new thread itself tried to
register a post import hook, or imported a new module.

� When using CallableObjectProxy as a wrapper for a type or function and calling the wrapped object, it was
not possible to pass a keyword argument named self. This only occurred when using the pure Python version
of wrapt and did not occur when using the C extension based implementation.

� When using PartialCallableObjectProxy as a wrapper for a type or function, when constructing the partial
object and when calling the partial object, it was not possible to pass a keyword argument named self. This
only occurred when using the pure Python version of wrapt and did not occur when using the C extension based
implementation.

� When using FunctionWrapper as a wrapper for a type or function and calling the wrapped object, it was not
possible to pass a keyword argument named self. Because FunctionWrapper is also used by decorators,
this also affected decorators on functions and class types. A similar issue also arose when these were applied
to class and instance methods where binding occurred when the method was accessed. In that case it was in
BoundFunctionWrapper that the problem could arise. These all only occurred when using the pure Python
version of wrapt and did not occur when using the C extension based implementation.

� When using WeakFunctionProxy as a wrapper for a function, when calling the function via the proxy object,
it was not possible to pass a keyword argument named self.

2.7. Release Notes 45

wrapt Documentation, Release 1.13.0rc2

2.7.3 Version 1.14.1

Bugs Fixed

� When the post import hooks mechanism was being used, and a Python package with its own custom module im-
porter was used, importing modules could fail if the custom module importer didn’t use the latest Python import
hook finder/loader APIs and instead used the deprecated API. This was actually occurring with the zipimporter
in Python itself, which was not updated to use the newer Python APIs until Python 3.10.

2.7.4 Version 1.14.0

Bugs Fixed

� Python 3.11 dropped inspect.formatargspec() which was used in creating signature changing decorators.
Now bundling a version of this function which uses Parameter and Signature from inspect module when
available. The replacement function is exposed as wrapt.formatargspec() if need it for your own code.

� When using a decorator on a class, isinstance() checks wouldn’t previously work as expected and
you had to manually use Type.__wrapped__ to access the real type when doing instance checks. The
__instancecheck__ hook is now implemented such that you don’t have to use Type.__wrapped__ instead of
Type as last argument to isinstance().

� Eliminated deprecation warnings related to Python module import system, which would have turned into broken
code in Python 3.12. This was used by the post import hook mechanism.

New Features

� Binary wheels provided on PyPi for aarch64 Linux systems and macOS native silicon where supported by
Python when using pypa/cibuildwheel.

2.7.5 Version 1.13.3

New Features

� Adds wheels for Python 3.10 on PyPi and where possible also now generating binary wheels for musllinux.

2.7.6 Version 1.13.2

Features Changed

� On the Windows platform when using Python 2.7, by default the C extension will not be installed and the pure
Python implementation will be used. This is because too often on Windows when using Python 2.7, there is no
working compiler available. Prior to version 1.13.0, when installing the package it would fallback to using the
pure Python implementation automatically but that relied on a workaround to do it when there was no working
compiler. With the changes in 1.13.0 to use the builtin mechanism of Python to not fail when a C extension
cannot be compiled, this fallback doesn’t work when the compiler doesn’t exist, as the builtin mechanism in
Python regards lack of a compiler as fatal and not a condition for which it is okay to ignore the fact that the
extension could not be compiled.

If you are using Python 2.7 on Windows, have a working compiler, and still want to attempt to install the C
extension, you can do so by setting the WRAPT_INSTALL_EXTENSIONS environment variable to true when
installing the wrapt package.

Note that the next signficant release of wrapt will drop support for Python 2.7 and Python 3.5. The change
described here is to ensure that wrapt can be used with Python 2.7 on Windows for just a little bit longer. If using
Python 2.7 on non Windows platforms, it will still attempt to install the C extension.

46 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.7.7 Version 1.13.1

Bugs Fixed

� Fix Python version constraint so PyPi classifier for pip requires Python 2.7 or Python 3.5+.

2.7.8 Version 1.13.0

Bugs Fixed

� When a reference to a class method was taken out of a class, and then wrapped in a function wrapper, and called,
the class type was not being passed as the instance argument, but as the first argument in args, with the instance
being None. The class type should have been passed as the instance argument.

� If supplying an adapter function for a signature changing decorator using input in the form of a function argument
specification, name lookup exceptions would occur where the adaptor function had annotations which referenced
non builtin Python types. Although the issues have been addressed where using input data in the format usually
returned by inspect.getfullargspec() to pass the function argument specification, you can still have prob-
lems when supplying a function signature as string. In the latter case only Python builtin types can be referenced
in annotations.

� When a decorator was applied on top of a data/non-data descriptor in a class definition, the call to the special
method __set_name__() to notify the descriptor of the variable name was not being propogated. Note that this
issue has been addressed in the FunctionWrapper used by @wrapt.decorator but has not been applied to the
generic ObjectProxy class. If using ObjectProxy directly to construct a custom wrapper which is applied to
a descriptor, you will need to propogate the __set_name__() call yourself if required.

� The issubclass() builtin method would give incorrect results when used with a class which had a decorator
applied to it. Note that this has only been able to be fixed for Python 3.7+. Also, due to what is arguably a bug
(https://bugs.python.org/issue44847) in the Python standard library, you will still have problems when the class
heirarchy uses a base class which has the abc.ABCMeta metaclass. In this later case an exception will be raised
of TypeError: issubclass() arg 1 must be a class.

2.7.9 Version 1.12.1

Bugs Fixed

� Applying a function wrapper to a static method of a class using the wrap_function_wrapper() function, or
wrapper for the same, wasn’t being done correctly when the static method was the immediate child of the target
object. It was working when the name path had multiple name components. A failure would subsequently occur
when the static method was called via an instance of the class, rather than the class.

2.7.10 Version 1.12.0

Features Changed

� Provided that you only want to support Python 3.7, when deriving from a base class which has a decorator applied
to it, you no longer need to access the true type of the base class using __wrapped__ in the inherited class list
of the derived class.

Bugs Fixed

� When using the synchronized decorator on instance methods of a class, if the class declared special methods
to override the result for when the class instance was tested as a boolean so that it returned False all the time,
the synchronized method would fail when called.

2.7. Release Notes 47

https://bugs.python.org/issue44847

wrapt Documentation, Release 1.13.0rc2

� When using an adapter function to change the signature of the decorated function, inspect.signature() was
returning the wrong signature when an instance method was inspected by accessing the method via the class
type.

2.7.11 Version 1.11.2

Bugs Fixed

� Fix possible crash when garbage collection kicks in when invoking a destructor of wrapped object.

2.7.12 Version 1.11.1

Bugs Fixed

� Fixed memory leak in C extension variant of PartialCallableObjectProxy class introduced in 1.11.0, when
it was being used to perform binding, when a call of an instance method was made through the class type, and
the self object passed explicitly as first argument.

� The C extension variant of the PartialCallableObjectProxy class introduced in 1.11.0, which is a version
of functools.partial which correctly handles binding when applied to methods of classes, couldn’t be used
when no positional arguments were supplied.

� When the C extension variant of PartialCallableObjectProxy was used and multiple positional arguments
were supplied, the first argument would be replicated and used to all arguments, instead of correct values, when
the partial was called.

� When the C extension variant of PartialCallableObjectProxy was used and keyword arguments were sup-
plied, it would fail as was incorrectly using the positional arguments where the keyword arguments should have
been used.

2.7.13 Version 1.11.0

Bugs Fixed

� When using arithmetic operations through a proxy object, checks about the types of arguments were not being
performed correctly, which could result in an exception being raised to indicate that a proxy object had not been
initialised when in fact the argument wasn’t even an instance of a proxy object.

Because an incorrect cast in C level code was being performed and an attribute in memory checked on the basis
of it being a type different to what it actually was, technically it may have resulted in a process crash if the size
of the object was smaller than the type being casted to.

� The __complex__() special method wasn’t implemented and using complex() on a proxy object would give
wrong results or fail.

� When using the C extension, if an exception was raised when using inplace or, ie., |=, the error condition wasn’t
being correctly propagated back which would result in an exception showing up as wrong location in subsequent
code.

� Type of long was used instead of Py_hash_t for Python 3.3+. This caused compiler warnings on Windows,
which depending on what locale was set to, would cause pip to fail when installing the package.

� If calling Class.instancemethod and passing self explicitly, the ability to access __name__ and
__module__ on the final bound method were not preserved. This was due to a partial being used for this
special case, and it doesn’t preserve introspection.

48 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

� Fixed typo in the getter property of ObjectProxy for accessing __annotations__. Appeared that it was still
working as would fall back to using generic __getattr__() to access attribute on wrapped object.

Features Changed

� Dropped support for Python 2.6 and 3.3.

� If copy.copy() or copy.deepcopy() is used on an instance of the ObjectProxy class, a
NotImplementedError exception is raised, with a message indicating that the object proxy must imple-
ment the __copy__() or __deepcopy__() method. This is in place of the default TypeError exception with
message indicating a pickle error.

� If pickle.dump() or pickle.dumps() is used on an instance of the ObjectProxy class, a
NotImplementedError exception is raised, with a message indicating that the object proxy must imple-
ment the __reduce_ex__() method. This is in place of the default TypeError exception with message
indicating a pickle error.

2.7.14 Version 1.10.11

Bugs Fixed

� When wrapping a @classmethod in a class used as a base class, when the method was called via the derived
class type, the base class type was being passed for the cls argument instead of the derived class type through
which the call was made.

New Features

� The C extension can be disabled at runtime by setting the environment variable WRAPT_DISABLE_EXTENSIONS.
This may be necessary where there is currently a difference in behaviour between pure Python implementation
and C extension and the C extension isn’t having the desired result.

2.7.15 Version 1.10.10

Features Changed

� Added back missing description and categorisations when releasing to PyPi.

2.7.16 Version 1.10.9

Bugs Fixed

� Code for inspect.getargspec() when using Python 2.6 was missing import of sys module.

2.7.17 Version 1.10.8

Bugs Fixed

� Ensure that inspect.getargspec() is only used with Python 2.6 where required, as function has been removed
in Python 3.6.

2.7. Release Notes 49

wrapt Documentation, Release 1.13.0rc2

2.7.18 Version 1.10.7

Bugs Fixed

� The mod operator ‘%’ was being incorrectly proxied in Python variant of object proxy to the xor operator ‘^’.

2.7.19 Version 1.10.6

Bugs Fixed

� Registration of post import hook would fail with an exception if registered after another import hook for the same
target module had been registered and the target module also imported.

New Features

� Support for testing with Travis CI added to repository.

2.7.20 Version 1.10.5

Bugs Fixed

� Post import hook discovery was not working correctly where multiple target modules were registered in the same
entry point list. Only the callback for the last would be called regardless of the target module.

� If a WeakFunctionProxy wrapper was used around a method of a class which was decorated using a wrapt
decorator, the decorator wasn’t being invoked when the method was called via the weakref proxy.

Features Changed

� The register_post_import_hook() function, modelled after the function of the same name in PEP-369
has been extended to allow a string name to be supplied for the import hook. This needs to be of the form
module::function and will result in an import hook proxy being used which will only load and call the function
of the specified moduled when the import hook is required. This avoids needing to load the code needed to operate
on the target module unless required.

2.7.21 Version 1.10.4

Bugs Fixed

� Fixup botched package version number from 1.10.3 release.

2.7.22 Version 1.10.3

Bugs Fixed

� Post import hook discovery from third party modules declared via setuptools entry points was failing due to
typo in temporary variable name. Also added the discover_post_import_hooks() to the public API as was
missing.

Features Changed

� To ensure parity between pure Python and C extension variants of the ObjectProxy class, allow the
__wrapped__ attribute to be set in a derived class when the ObjectProxy.__init__() method hasn’t been
called.

50 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.7.23 Version 1.10.2

Bugs Fixed

� When creating a derived ObjectProxy, if the base class __init__() method wasn’t called and the
__wrapped__ attribute was accessed, in the pure Python implementation a recursive call of __getattr__()
would occur and the maximum stack depth would be reached and an exception raised.

� When creating a derived ObjectProxy, if the base class __init__() method wasn’t called, in the C extension
implementation, if that instance was then used in a binary arithmetic operation the process would crash.

2.7.24 Version 1.10.1

Bugs Fixed

� When using FunctionWrapper around a method of an existing instance of a class, rather than on the type, then
a memory leak could occur in two different scenarios.

The first issue was that wrapping a method on an instance of a class was causing an unwanted reference to the
class meaning that if the class type was transient, such as it is being created inside of a function call, the type
object would leak.

The second issue was that wrapping a method on an instance of a class and then calling the method was causing
an unwanted reference to the instance meaning that if the instance was transient, it would leak.

This was only occurring when the C extension component for the wrapt module was being used.

2.7.25 Version 1.10.0

New Features

� When specifying an adapter for a decorator, it is now possible to pass in, in addition to passing in a callable, a
tuple of the form which is returned by inspect.getargspec(), or a string of the form which is returned by
inspect.formatargspec(). In these two cases the decorator will automatically compile a stub function to
use as the adapter. This eliminates the need for a caller to generate the stub function if generating the signature
on the fly.

def argspec_factory(wrapped):
argspec = inspect.getargspec(wrapped)

args = argspec.args[1:]
defaults = argspec.defaults and argspec.defaults[-len(argspec.args):]

return inspect.ArgSpec(args, argspec.varargs,
argspec.keywords, defaults)

def session(wrapped):
@wrapt.decorator(adapter=argspec_factory(wrapped))
def _session(wrapped, instance, args, kwargs):

with transaction() as session:
return wrapped(session, *args, **kwargs)

return _session(wrapped)

This mechanism and the original mechanism to pass a function, meant that the adapter function had to be created
in advance. If the adapter needed to be generated on demand for the specific function to be wrapped, then it would

2.7. Release Notes 51

wrapt Documentation, Release 1.13.0rc2

have been necessary to use a closure around the definition of the decorator as above, such that the generator could
be passed in.

As a convenience, instead of using such a closure, it is also now possible to write:

def argspec_factory(wrapped):
argspec = inspect.getargspec(wrapped)

args = argspec.args[1:]
defaults = argspec.defaults and argspec.defaults[-len(argspec.args):]

return inspect.ArgSpec(args, argspec.varargs,
argspec.keywords, defaults)

@wrapt.decorator(adapter=wrapt.adapter_factory(argspec_factory))
def _session(wrapped, instance, args, kwargs):

with transaction() as session:
return wrapped(session, *args, **kwargs)

The result of wrapt.adapter_factory() will be recognised as indicating that the creation of the adapter is
to be deferred until the decorator is being applied to a function. The factory function for generating the adapter
function or specification on demand will be passed the function being wrapped by the decorator.

If wishing to create a library of routines for generating adapter functions or specifications dynamically, then
you can do so by creating classes which derive from wrapt.AdapterFactory as that is the type which is
recognised as indicating lazy evaluation of the adapter function. For example, wrapt.adapter_factory() is
itself implemented as:

class DelegatedAdapterFactory(wrapt.AdapterFactory):
def __init__(self, factory):

super(DelegatedAdapterFactory, self).__init__()
self.factory = factory

def __call__(self, wrapped):
return self.factory(wrapped)

adapter_factory = DelegatedAdapterFactory

Bugs Fixed

� The inspect.signature() function was only added in Python 3.3. Use fallback when doesn’t exist and on
Python 3.2 or earlier Python 3 versions.

Note that testing is only performed for Python 3.3+, so it isn’t actually known if the wrapt package works on
Python 3.2.

2.7.26 Version 1.9.0

Features Changed

� When using wrapt.wrap_object(), it is now possible to pass an arbitrary object in addition to a module object,
or a string name identifying a module. Similar for underlying wrapt.resolve_path() function.

Bugs Fixed

� It is necessary to proxy the special __weakref__ attribute in the pure Python object proxy else using inspect.
getmembers() on a decorator class will fail.

52 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

� The FunctionWrapper class was not passing through the instance correctly to the wrapper function when it was
applied to a method of an existing instance of a class.

� The FunctionWrapper was not always working when applied around a method of a class type by access-
ing the method to be wrapped using getattr(). Instead it is necessary to access the original unbound
method from the class __dict__. Updated the FunctionWrapper to work better in such situations, but also
modify resolve_path() to always grab the class method from the class __dict__ when wrapping meth-
ods using wrapt.wrap_object() so wrapping is more predictable. When doing monkey patching wrapt.
wrap_object() should always be used to ensure correct operation.

� The AttributeWrapper class used internally to the function wrap_object_attribute() had wrongly named
the __delete__ method for the descriptor as __del__.

2.7.27 Version 1.8.0

Features Changed

� Previously using @wrapt.decorator on a class type didn’t really yield anything which was practically useful. This
is now changed and when applied to a class an instance of the class will be automatically created to be used as
the decorator wrapper function. The requirement for this is that the __call__() method be specified in the style
as would be done for the decorator wrapper function.

@wrapt.decorator
class mydecoratorclass(object):

def __init__(self, arg=None):
self.arg = arg

def __call__(self, wrapped, instance, args, kwargs):
return wrapped(*args, **kwargs)

@mydecoratorclass
def function():

pass

If the resulting decorator class is to be used with no arguments, the __init__() method of the class must have
all default arguments. These arguments can be optionally supplied though, by using keyword arguments to the
resulting decorator when applied to the function to be decorated.

@mydecoratorclass(arg=1)
def function():

pass

2.7.28 Version 1.7.0

New Features

� Provide wrapt.getcallargs() for determining how arguments mapped to a wrapped function. For Python 2.7 this
is actually inspect.getcallargs() with a local copy being used in the case of Python 2.6.

� Added wrapt.wrap_object_attribute() as a way of wrapping or otherwise modifying the result of trying to access
the attribute of an object instance. It works by adding a data descriptor with the same name as the attribute, to
the class type, allowing reading of the attribute to be intercepted. It does not affect updates to or deletion of the
attribute.

Bugs Fixed

2.7. Release Notes 53

wrapt Documentation, Release 1.13.0rc2

� Need to explicitly proxy special methods __bytes__(), __reversed__() and __round__() as they are only looked
up on the class type and not the instance, so can’t rely on __getattr__() fallback.

� Raise more appropriate TypeError, with corresponding message, rather than IndexError, when a decorated in-
stance or class method is called via the class but the required 1st argument of the instance or class is not supplied.

2.7.29 Version 1.6.0

Bugs Fixed

� The ObjectProxy class would return that the __call__() method existed even though the wrapped object didn’t
have one. Similarly, callable() would always return True even if the wrapped object was not callable.

This resulted due to the existence of the __call__() method on the wrapper, required to support the possibility
that the wrapped object may be called via the proxy object even if it may not turn out that the wrapped object
was callable.

Because checking for the existence of a __call__() method or using callable() can sometimes be used to indirectly
infer the type of an object, this could cause issues. To ensure that this now doesn’t occur, the ability to call a
wrapped object via the proxy object has been removed from ObjectProxy. Instead, a new class CallableObject-
Proxy is now provided, with it being necessary to make a conscious choice as to which should be used based on
whether the object to be wrapped is in fact callable.

Note that neither before this change, or with the introduction of the class CallableObjectProxy, does the object
proxy perform binding. If binding behaviour is required it still needs to be implemented explicitly to match
the specific requirements of the use case. Alternatively, the FunctionWrapper class should be used which does
implement binding, but also enforces a wrapper mechanism for manipulating what happens at the time of the
call.

2.7.30 Version 1.5.1

Bugs Fixed

� Instance method locking for the synchronized decorator was not correctly locking on the instance but the class,
if a synchronized class method had been called prior to the synchronized instance method.

2.7.31 Version 1.5.0

New Features

� Enhanced @wrapt.transient_function_wrapper so it can be applied to instance methods and class methods with
the self/cls argument being supplied correctly. This allows instance and class methods to be used for this type of
decorator, with the instance or class type being able to be used to hold any state required for the decorator.

Bugs Fixed

� If the wrong details for a function to be patched was given to the decorator @wrapt.transient_function_wrapper,
the exception indicating this was being incorrectly swallowed up and mutating to a different more obscure error
about local variable being access before being set.

54 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.7.32 Version 1.4.2

Bugs Fixed

� A process could crash if the C extension module was used and when using the ObjectProxy class a reference count
cycle was created that required the Python garbage collector to kick in to break the cycle. This was occurring as
the C extension had not implemented GC support in the ObjectProxy class correctly.

2.7.33 Version 1.4.1

Bugs Fixed

� Overriding __wrapped__ attribute directly on any wrapper more than once could cause corruption of memory
due to incorrect reference count decrement.

2.7.34 Version 1.4.0

New Features

� Enhanced @wrapt.decorator and @wrapt.function_wrapper so they can be applied to instance methods and class
methods with the self/cls argument being supplied correctly. This allows instance and class methods to be used
as decorators, with the instance or class type being able to be used to hold any state required for the decorator.

Bugs Fixed

� Fixed process crash in extension when the wrapped object passed as first argument to FunctionWrapper did not
have a tp_descr_get callback for the type at C code level. Now raised an AttributeError exception in line with
what Python implementation does.

2.7.35 Version 1.3.1

Bugs Fixed

� The discover_post_import_hooks() function had not been added to the top level wrapt module.

2.7.36 Version 1.3.0

New Features

� Added a @transient_function_wrapper decorator for applying a wrapper function around a target function only
for the life of a single function call. The decorator is useful for performing mocking or pass through data valida-
tion/modification when doing unit testing of packages.

2.7.37 Version 1.2.1

Bugs Fixed

� In C implementation, not dealing with unbound method type creation properly which would cause later problems
when calling instance method via the class type in certain circumstances. Introduced problem in 1.2.0.

� Eliminated compiler warnings due to missing casts in C implementation.

2.7. Release Notes 55

wrapt Documentation, Release 1.13.0rc2

2.7.38 Version 1.2.0

New Features

� Added an ‘enabled’ option to @decorator and FunctionWrapper which can be provided a boolean, or a function
returning a boolean to allow the work of the decorator to be disabled dynamically. When a boolean, is used for
@decorator, the wrapper will not even be applied if ‘enabled’ is False. If a function, then will be called prior to
wrapper being called and if returns False, then original wrapped function called directly rather than the wrapper
being called.

� Added in an implementation of a post import hook mechanism in line with that described in PEP 369.

� Added in helper functions specifically designed to assist in performing monkey patching of existing code.

Features Changed

� Collapsed functionality of _BoundMethodWrapper into _BoundFunctionWrapper and renamed the latter to
BoundFunctionWrapper. If deriving from the FunctionWrapper class and needing to override the type of the
bound wrapper, the class attribute __bound_function_wrapper__ should be set in the derived FunctionWrap-
per class to the replacement type.

Bugs Fixed

� When creating a custom proxy by deriving from ObjectProxy and the custom proxy needed to override
__getattr__(), it was not possible to called the base class ObjectProxy.__getattr__() when the C implementa-
tion of ObjectProxy was being used. The derived class __getattr__() could also get ignored.

� Using inspect.getargspec() now works correctly on bound methods when an adapter function can be provided to
@decorator.

2.7.39 Version 1.1.3

New Features

� Added a _self_parent attribute to FunctionWrapper and bound variants. For the FunctionWrapper the value will
always be None. In the case of the bound variants of the function wrapper, the attribute will refer back to the
unbound FunctionWrapper instance. This can be used to get a back reference to the parent to access or cache
data against the persistent function wrapper, the bound wrappers often being transient and only existing for the
single call.

Improvements

� Use interned strings to optimise name comparisons in the setattro() method of the C implementation of the object
proxy.

Bugs Fixed

� The pypy interpreter is missing operator.__index__() so proxying of that method in the object proxy would fail.
This is a bug in pypy which is being addressed. Use operator.index() instead which pypy does provide and which
also exists for CPython.

� The pure Python implementation allowed the __wrapped__ attribute to be deleted which could cause problems.
Now raise a TypeError exception.

� The C implementation of the object proxy would crash if an attempt was made to delete the __wrapped__ attribute
from the object proxy. Now raise a TypeError exception.

56 Chapter 2. Documentation

wrapt Documentation, Release 1.13.0rc2

2.7.40 Version 1.1.2

Improvements

� Reduced performance overhead from previous versions. Most notable in the C implementation. Benchmark
figures have been updated in documentation.

2.7.41 Version 1.1.1

Bugs Fixed

� Python object memory leak was occurring due to incorrect increment of object reference count in C implemen-
tation of object proxy when an instance method was called via the class and the instance passed in explicitly.

� In place operators in pure Python object proxy for __idiv__ and __itruediv__ were not replacing the wrapped
object with the result of the operation on the wrapped object.

� In place operators in C implementation of Python object proxy were not replacing the wrapped object with the
result of the operation on the wrapped object.

2.7.42 Version 1.1.0

New Features

� Added a synchronized decorator for performing thread mutex locking on functions, object instances or classes.
This is the same decorator as covered as an example in the wrapt documentation.

� Added a WeakFunctionProxy class which can wrap references to instance methods as well as normal functions.

� Exposed from the C extension the classes _FunctionWrapperBase, _BoundFunctionWrapper and _Bound-
MethodWrapper so that it is possible to create new variants of FunctionWrapper in pure Python code.

Bugs Fixed

� When deriving from ObjectProxy, and the C extension variant was being used, if a derived class overrode
__new__() and tried to access attributes of the ObjectProxy created using the base class __new__() before
__init__() was called, then an exception would be raised indicating that the ‘wrapper has not been initialised’.

� When deriving from ObjectProxy, and the C extension variant was being used, if a derived class __init__()
attempted to update attributes, even the special ‘_self_’ attributed before calling the base class __init__() method,
then an exception would be raised indicating that the ‘wrapper has not been initialised’.

2.7.43 Version 1.0.0

Initial release.

2.7. Release Notes 57

wrapt Documentation, Release 1.13.0rc2

2.8 Known Issues

The following known issues exist.

2.8.1 @classmethod.__get__()

Prior to Python 3.9 the @classmethod decorator assumes in the implementation of its __get__() method that the
wrapped function is always a normal function. It doesn’t entertain the idea that the wrapped function could actually
be a descriptor, the result of a nested decorator. This is an issue because it means that the complete descriptor binding
protocol is not performed on anything which is wrapped by the @classmethod decorator.

The consequence of this is that when @classmethod is used to wrap a decorator implemented using @wrapt.
decorator, that __get__() isn’t called on the latter. The result is that it is not possible in the latter to properly
identify the decorator as being bound to a class method and it will instead be identified as being associated with a
normal function, with the class type being passed as the first argument.

The behaviour of the Python @classmethod was reported in the issue (http://bugs.python.org/issue19072). Prior to
Python 3.9, which is where the Python interpreter was fixed, the only solution is the recommendation that decorators
implemented using @wrapt.decorator always be placed outside of @classmethod and never inside.

2.8.2 Using decorated class with super()

In the implementation of a decorated class, if needing to use a reference to the class type with super, it is necessary to
access the original wrapped class and use it instead of the decorated class.

@mydecorator
class Derived(Base):

def __init__(self):
super(Derived.__wrapped__, self).__init__()

If using Python 3, one can simply use super() with no arguments and everything will work fine.

@mydecorator
class Derived(Base):

def __init__(self):
super().__init__()

2.8.3 Deriving from decorated class

If deriving from a decorated class, it is necessary to access the original wrapped class and use it as the base class.

@mydecorator
class Base(object):

pass

class Derived(Base.__wrapped__):
pass

In doing this, the functionality of any decorator on the base class is not inherited. If creation of a derived class needs
to also be mediated via the decorator, the decorator would need to be applied to the derived class also.

58 Chapter 2. Documentation

http://bugs.python.org/issue19072

wrapt Documentation, Release 1.13.0rc2

In this case of trying to decorate a base class in a class hierarchy, it may turn out to be more appropriate to use a meta
class instead of trying to decorate the base class.

Note that as of Python 3.7 and wrapt 1.12.0, accessing the true type of the base class using __wrapped__ is not required.
Such code though will not work for versions of Python older than Python 3.7.

2.8.4 Using issubclass() on abstract classes

If a class heirarchy has a base class which uses the abc.ABCMetametaclass, and a decorator is applied to a class in the
heirarchy, use of issubclass() with classes where the decorator is applied will result in an exception of:

TypeError: issubclass() arg 1 must be a class

This is due to what can be argued as being a bug in The Python standard library and has been reported (https://bugs.
python.org/issue44847).

2.8. Known Issues 59

https://bugs.python.org/issue44847
https://bugs.python.org/issue44847

wrapt Documentation, Release 1.13.0rc2

60 Chapter 2. Documentation

CHAPTER

THREE

PRESENTATIONS

Conference presentations related to the wrapt module:

� http://lanyrd.com/2013/kiwipycon/scpkbk

61

http://lanyrd.com/2013/kiwipycon/scpkbk

wrapt Documentation, Release 1.13.0rc2

62 Chapter 3. Presentations

CHAPTER

FOUR

BLOG POSTS

Blog posts related to the wrapt module:

� https://github.com/GrahamDumpleton/wrapt/tree/master/blog

63

https://github.com/GrahamDumpleton/wrapt/tree/master/blog

wrapt Documentation, Release 1.13.0rc2

64 Chapter 4. Blog Posts

CHAPTER

FIVE

INSTALLATION

The wrapt module is available from PyPi at:

� https://pypi.python.org/pypi/wrapt

and can be installed using pip.

pip install wrapt

65

https://pypi.python.org/pypi/wrapt

wrapt Documentation, Release 1.13.0rc2

66 Chapter 5. Installation

CHAPTER

SIX

SOURCE CODE

Full source code for the wrapt module, including documentation files and unit tests, can be obtained from github.

� https://github.com/GrahamDumpleton/wrapt

67

https://github.com/GrahamDumpleton/wrapt

	Overview
	Documentation
	Getting Started
	Function Decorators
	Creating Decorators
	Decorators With Arguments
	Decorators With Optional Arguments
	Processing Function Arguments
	Enabling/Disabling Decorators
	Dynamically Disabling Decorators
	Function Argument Specifications
	Wrapped Function Documentation
	Wrapped Function Source Code
	Signature Changing Decorators
	Decorating Functions
	Decorating Instance Methods
	Decorating Class Methods
	Decorating Static Methods
	Decorating Classes
	Universal Decorators

	Proxies and Wrappers
	Object Proxy
	Type Comparison
	Custom Object Proxies
	Proxy Object Attributes
	Function Wrappers
	Custom Function Wrappers

	Assorted Examples
	Thread Synchronization

	Decorator Benchmarks
	Undecorated Calls
	Function Closures
	wrapt.decorator
	decorator.decorator

	Running Unit Tests
	Coverage

	Release Notes
	Version 1.16.0
	Version 1.15.0
	Version 1.14.1
	Version 1.14.0
	Version 1.13.3
	Version 1.13.2
	Version 1.13.1
	Version 1.13.0
	Version 1.12.1
	Version 1.12.0
	Version 1.11.2
	Version 1.11.1
	Version 1.11.0
	Version 1.10.11
	Version 1.10.10
	Version 1.10.9
	Version 1.10.8
	Version 1.10.7
	Version 1.10.6
	Version 1.10.5
	Version 1.10.4
	Version 1.10.3
	Version 1.10.2
	Version 1.10.1
	Version 1.10.0
	Version 1.9.0
	Version 1.8.0
	Version 1.7.0
	Version 1.6.0
	Version 1.5.1
	Version 1.5.0
	Version 1.4.2
	Version 1.4.1
	Version 1.4.0
	Version 1.3.1
	Version 1.3.0
	Version 1.2.1
	Version 1.2.0
	Version 1.1.3
	Version 1.1.2
	Version 1.1.1
	Version 1.1.0
	Version 1.0.0

	Known Issues
	@classmethod.__get__()
	Using decorated class with super()
	Deriving from decorated class
	Using issubclass() on abstract classes

	Presentations
	Blog Posts
	Installation
	Source Code

