
MilkDrop preset authoring guide

Author: Ryan Geiss

Converted to word: Rovastar

This is the original authoring guide written by Ryan Geiss and is correct as of version
1.02 of MilkDrop. It has been converted to Word for ease of use. Also added a few
missing functions.

Sections Page
1. About Presets 1
2. Preset Authoring – Basic 2-3
3. Preset Authoring – Advanced 4-10
 a. Per_frame equations 4-6
 b. Per_pixel equations 7-8
 c. Quality Assurance 9
 d. Debugging 9
 e. Function Reference 10

1. About Presets

A 'preset' is a collection of parameters that tell MilkDrop how to draw the wave, how
to warp the image around, and so on. MilkDrop ships with around ~100 built-in
presets, each one having a distinct look and feel to it.

Using MilkDrop's built-in “preset-editing menu”, you can edit presets on the fly, from
within the program. You can make slight adjustments to existing presets, and then
save over them; or you can change lots of things, so the preset doesn't look anything
like the original, and then save it under a new name. You can even write insane new
mathematical equations, of your own imagination, into your preset files and come up
with things that MilkDrop has never done before!

Each preset is saved as a file with the “.milk” extension, so you can easily send them
to your friends or post them on the web. You can also go to
http://www.nullsoft.com/free/milkdrop and then jump to the “preset sharing forum” to
see what other people have come up with, or post your own cool, new presets.

1

http://www.nullsoft.com/free/milkdrop

2. Preset Authoring - Basic

You can edit the properties of the current preset by hitting 'M', which brings up the
“preset-editing menu”. From this menu you can use the up and down arrow keys to
select an item. Press the RIGHT arrow key to move forward through the menu and
select the item (note: you can also hit SPACE or RETURN to do this); press the LEFT
arrow key to go back to the previous menu.

Pressing 'M' while the menu is already showing will hide the menu; pressing ESCAPE
will do the same thing. Press 'M' again to bring the menu back.

Once you've reached an item on the menu whose value can be edited, use the UP and
DOWN arrow keys to increase or decrease its value, respectively. Changes will
register immediately. Use PAGE UP and PAGE DOWN to increase the value more
quickly. Hold down SHIFT and use the UP/DOWN arrow keys to change the value
very slowly. Hit RETURN to keep the new value, or ESC to abort the change.

If the item you're editing is a text string, you can use the arrow keys to move around.
The Insert key can be used to toggle between insert and overtype modes. You can
hold shift and use the arrow keys (home, end, left, right) to make a selection, which
will be identified by brackets []. You can then use CTRL-C or CTRL-X to copy or cut
text. CTRL-P pastes. When finished editing, hit RETURN to keep the new string, or
ESC to abort the change.

You'll want to get into the habit of using SCROLL LOCK whenever you're making
changes to a preset that you intend to save; otherwise, the preset is sure to keep
randomly changing on you. You might ask me, “Why don't you just automatically
lock the preset while the menu is up?” I will answer you, “because in the instant
between exiting the menu and going to save the preset, the preset might then switch,
and you'd lose your changes.” Then you might ask me, “then why don't you just leave
it locked whenever the user makes a change from the menu?” and I will say to you,
“because I hate it when programs do things like that. You have an idea in your brain
about the state of the Scroll Lock key, because you're the one setting that state. I want
your mind to always be up-to-date.” And you might then ask me: “how large is
large?” And I will tell you: “thirty.”

2

There are also some hotkeys that will allow you to change certain common
parameters to the current preset. These are listed below.

 Motion

i/I - zoom in/out
y/Y - decrease, increase zoom exponent (perspective)
[/] - push motion to the left/right (dx)
{ / } - push motion up/down (dy)
< / > - rotate left/right (rot)
o/O - shrink/grow the amplitude of the warp effect

 Waveform

W - cycle through waveforms
j/J - scale waveform down/up
k/K - smooth the waveform less/more
e/E - make the waveform more transparent/more solid

 Brightness

d/D - decrease, increase decay (fades image to black over time)
g/G - decrease, increase gamma (brightness)

 Video Echo effect

q/Q - scale 2nd graphics layer down/up
a/A - decrease/increase alpha of 2nd graphics layer
F - flip 2nd graphics layer (cycles through 4 fixed orientations)

3

3. Preset Authoring - Advanced

This section describes how to use the 'per-frame' and 'per-pixel' equations to develop
unique new presets.

a. Per_frame Equations

When you hit 'm' to show the preset-editing menu, several items show up. If you
explore the sub-menus, you'll see that all of the properties that make up the preset
you're currently viewing are there. The values you can specify here (such as zoom
amount, rotation amount, wave colour, etc.) are all static values, meaning that they
don't change in time. For example, take the 'zoom amount' option under the 'motion'
submenu. If this value is 1.0, there is no zoom. If the value is 1.01, the image zooms
in 1% every frame. If the value is 1.10, the image zooms in 10% every frame. If the
value is 0.9, the image zooms out 10% every frame; and so on.

However, presets get far more interesting if you can take these parameters (such as
the zoom amount) and animate them (make them change over time). For example, if
you could take the 'zoom amount' parameter and make it oscillate (vary) between 0.9
and 1.1 over time, the image would cyclically zoom in and out, in time.

You can do this - by writing 'per-frame' and 'per-pixel' equations. Let's start with 'per-
frame' equations. These are executed once per frame. So, if you were to type the
following equation in:

zoom = zoom + 0.1*sin(time);

...then the zoom amount would oscillate between 0.9 and 1.1 over time. (Recall from
your geometry classes that sin() returns a value between -1 and 1.) The equation says:
"take the static value of 'zoom', then replace it with that value, plus some variation."
This particular equation would oscillate (cycle) every 6.28 seconds, since the sin()
function's period is 6.28 (PI*2) seconds. If you wanted it to make it cycle every 2
seconds, you could use:

zoom = zoom + 0.1*sin(time*3.14);

 Now, let's say you wanted to make the colour of the waveform (sound wave) that gets
plotted on the screen vary through time. The colour is defined by three values, one for
each of the main colour components (red, green, and blue), each in the range 0 to 1 (0
is dark, 1 is full intensity). You could use something like this:

wave_r = wave_r + 0.5*sin(time*1.13);
wave_g = wave_g + 0.5*sin(time*1.23);
wave_b = wave_b + 0.5*sin(time*1.33);

It's nice to stagger the frequencies (1.13, 1.23, and 1.33) of the sine functions for the
red, green, and blue colour components of the wave so that they cycle at different
rates, to avoid them always being all the same (which would create a greyscale wave).

4

Here is a full list of the variables available for writing per-frame equations:

Name Writable? Range Description
zoom yes >0 Controls inward/outward motion. 0.9=zoom out

10% per frame, 1.0=no zoom, 1.1=zoom in 10%
zoomexp yes >0 Controls the curvature of the zoom; 1=normal
rot yes Controls the amount of rotation. 0=none,

0.1=slightly right,-0.1=slightly clockwise,
0.1=CCW

warp yes >0 Controls the magnitude of the warping; 0=none,
1=normal, 2=major warping...

cx yes 0..1 Controls where the centre of rotation and stretching
is, horizontally. 0=left, 0.5=centre, 1=right

cy yes 0..1 Controls where the centre of rotation and stretching
is, vertically. 0=top, 0.5=centre, 1=bottom

dx yes controls amount of constant horizontal motion; -
0.01 = move left 1% per frame, 0=none, 0.01 =
move right 1%

dy yes Controls amount of constant vertical motion; -0.01
= move up 1% per frame, 0=none, 0.01 = move
down 1%

sx yes >0 Controls amount of constant horizontal stretching;
0.99=shrink 1%, 1=normal, 1.01=stretch 1%

sy yes >0 Controls amount of constant vertical stretching;
0.99=shrink 1%, 1=normal, 1.01=stretch 1%

decay yes 0..1 Controls the eventual fade to black; 1=no fade,
0.9=strong fade

wave_r yes 0..1 Amount of red colour in the wave (0..1),
wave_g yes 0..1 Amount of green colour in the wave (0..1)
wave_b yes 0..1 Amount of blue colour in the wave (0..1)
wave_x yes 0..1 Position of the waveform: 0 = far left edge of

screen, 0.5 = centre, 1 = far right
wave_y yes 0..1 Position of the waveform: 0 = very bottom of

screen, 0.5 = centre, 1 = top
wave_mystery yes -1..1 What this parameter does is a mystery. (honestly,

though, this value does different things for each
waveform; for example, it could control angle at
which the waveform was drawn.)

ob_size yes 0..0.5 Thickness of the outer border drawn at the edges of
the screen every frame

ob_r yes 0..1 Amount of red colour in the outer border
ob_g yes 0..1 Amount of green colour in the outer border
ob_b yes 0..1 Amount of blue colour in the outer border
ob_a yes 0..1 Opacity of the outer border (0=transparent,

1=opaque)
ib_size yes 0..0.5 Thickness of the inner border drawn at the edges of

the screen every frame
ib_r yes 0..1 Amount of red colour in the inner border
ib_g yes 0..1 Amount of green colour in the inner border
ib_b yes 0..1 Amount of blue colour in the inner border
ib_a yes 0..1 Opacity of the inner border (0=transparent,

1=opaque)

5

mv_a yes 0..1 Opacity of the motion vectors (0=transparent,
1=opaque)

mv_r yes 0..1 Amount of red colour in the motion vectors
mv_g yes 0..1 Amount of green colour in the motion vectors
mv_b yes 0..1 Amount of blue colour in the motion vectors
mv_x yes 0..64 The number of motion vectors in the X direction
mv_y yes 0..48 The number of motion vectors in the Y direction
mv_l yes 0..5 The length of the motion vectors (0=no trail,

1=normal, 2=double...)
time NO >0 retrieves the current time, in seconds, since

MilkDrop started running
bass NO >0 Retrieves the current amount of bass. 1 is normal;

below ~0.7 is quiet; above ~1.3 is loud bass
mid NO >0 -same, but for mids (middle frequencies)
treb NO >0 -same, but for treble (high) frequencies
bass_att NO >0 Retrieves an attenuated reading on the bass,

meaning that it is damped in time and doesn't
change so rapidly.

mid_att NO >0 -same, but for mids (middle frequencies)
treb_att NO >0 -same, but for treble (high) frequencies
frame NO Retrieves the number of frames of animation

elapsed since the program started
progress NO 0..1 Progress through the current preset; if preset was

just loaded, this is closer to 0; if preset is about to
end, this is closer to 1.Note: If Scroll Lock is on,
'progress' will freeze!

Some of the variables are read-only, meaning that you shouldn't change their values
them through the equations. You can; it won’t stop you; but the results are
unpredictable.

You can also make your own variables. For example:

my_volume = (bass + mid + treb)/3;
zoom = zoom + 0.1*(my_volume - 1);

This would make the zoom amount increase when the music is loud, and decrease
when the music is quiet. However, if you used the variable 'my_volume' in the per-
frame equations, you can not read that value in the per-pixel equations (see next
section)! If you need to precompute some custom values in the per-frame equations
for later use in the per-pixel equations, use the following variables:

q1
q2
q3
q4
q5

For a good example of this, see the 'dynamic swirls' preset.

6

b. Per_Pixel Equations

So far we've discussed only how to change parameters based on time. What if you
wanted to also vary a parameter, such as the zoom amount, in different ways, for
different locations on the screen? For example, normally, the result of the 'zoom'
parameter is to just do a flat zoom. This doesn't look very realistic, because you don't
see any perspective in the zoom. It would be better if we could give a unique zoom
amount to each pixel on the screen; we could make the pixels far away from the
centre zoom more, and this would give it more perspective. In order to do this, we use
"per-pixel" equations, instead of per-frame equations.

 The code for this per-pixel equation is simple:

 zoom = zoom + rad*0.1;

Where 'rad' is the radius of the pixel if it were cast into polar coordinates; from
another perspective, 'rad' is the distance of the pixel from the centre of the screen. 'rad'
is zero at the centre, and 1 at the corners. So if we run the above code, the image will
be zoomed into 10% more at the edges of the screen than at the centre.

The per-pixel equations are really just like the per-frame equations, except for current
variables. The following variables are available exclusively to per-pixel equations
(and not to per-frame equations):

Name Writeable? Range Description
x NO 0..1 Retrieves the x-position of the current pixel. At

the very left edge of the screen this would be 0; in
the middle, 0.5; and at the right, 1.

y NO 0..1 Retrieves the y-position of the current pixel. At
the very top edge of the screen this would be 0; in
the middle, 0.5; and at the bottom, 1.

rad NO 0..1 Retrieves the distance of the pixel from the centre
of the screen. At the centre of the screen this will
be zero, and at the corners, 1. (The middle of the
edges will be 0.707 (half of the square root of 2).

ang NO 0..6.28 Retrieves the angle of the current pixel, with
respect to the centre of the screen. If the point is to
the right of the centre, this is zero; above it, it is
PI/2 (1.57); to the left, it is PI (3.14); and below, it
is 4.71 (PI*3/2). If it is just a dab below being
directly to the right of the centre of the screen, the
value will approach 6.28 (PI*2). (note: this is
simply the arctangent of y over x, precomputed
for you.)

7

There are also a several variables that are missing for per-pixel equations.

They are:

decay,
wave_r,
wave_g,
wave_b,
wave_x,
wave_y,
wave_mystery,
ob_size,
ob_r,
ob_g,
ob_b,
ob_a,
ib_size,
ib_r,
ib_g,
ib_b,
ib_a,
mv_a,
mv_r,
mv_g,
mv_b,
mv_x,
mv_y,
mv_l

The main reason for distinction between per-frame and per-pixel equations is simple:
SPEED. If you have a per-pixel equation that doesn't make use of the x, y, rad, or ang
variables, then there's no reason for it to be executed per-pixel; it could be executed
once per frame, and the result would be the same. So, here's a maxim to write on the
wall:

“If a per-pixel equation doesn't use at least one of the variables {x, y, rad, ang}, then it
should be actually be a per-frame equation.”

 You might be wondering how on earth all these formulas could be computed for
every pixel on the screen, every frame, and still yield a high frame rate. Well, that's
the magic of the hamster. And the fact that it really does the processing only at certain
points on the screen, then interpolates the results across the space between the points.
In the config panel, the "mesh size" option defines how many points (in X and Y)
there are at which the per-pixel equations are actually computed. When you crank this
option up, you start eating up CPU cycles rather quickly.

8

c. Quality Assurance

In order to make sure the presets you create work well on other systems, keep the
following in mind:

1. Design your presets using the default mesh size (24x18) option from the config
panel, or at least check, before you distribute them, to make sure they look correct at
the default mesh size. If your mesh is too coarse (small), then a viewer with the
default mesh size might see unexpected "bonus" effects that you might not have
intended, and might mess up your preset. If your mesh is too fine, then a viewer with
the default might not see all the detail you intended, and it might look bad.

2. Try to design your presets in a 32-bit video mode, so that its brightness levels are
standard. The thing to really watch out for is designing your presets in 16-bit colour
when the "fix pink/ white colour saturation artefact" checkbox is checked. This
checkbox keeps the image extra dark to avoid colour saturation, which is only
necessary on some cards, in 16-bit colour. If this is the case for you, and you write a
preset, then when you run it on another machine, it might appear insanely bright.

3. Don't underestimate the power of the 'dx' and 'dy' parameters. Some of the best
presets a based on using these. If you strip everything out of a preset so that there's no
motion at all, then you can use the dx and dy parameters to have precise manual
control over the motion. Basically, all the other effects (zoom, warp, rot, etc.) are just
complicated abstractions; they could all be simulated by using only {x, y, rad, ang}
and {dx, dy}.

4. If you use the 'progress' variable in a preset, make sure you try the preset out with
several values for 'Time Between Auto Preset Changes'. The biggest thing to avoid is
using something like sin(progress), since the rate at which 'progress' increases can
vary drastically from system to system, depending on the user's setting for 'Time
Between Auto Preset Changes'.

d. Debugging

One feature that preset authors should definitely be aware of is the variable
monitoring feature, which lets you monitor (watch) the value of any per-frame
variable you like. First, hit the 'N' key to show the monitor value, which will probably
display zero. Then all you have to do is add a line like this to the per-frame equations:

monitor = x;

where 'x' is the variable or expression you want to monitor. Once you hit
CTRL+ENTER to accept the changes, you should see the value of the per-frame
variable or expression in the upper-right corner of the screen!

Once again, note that it only works for per_frame equations, and NOT for per-pixel
equations.

9

e. Function Reference

Following is a list of the functions supported by the expression evaluator. The list was
blatantly ripped from the help box of Justin Frankels' AVS plug-in, since MilkDrop
uses the expression evaluator that he wrote.

Format your expressions using a semicolon (;) to delimit between statements. Use
parenthesis ['(' and ')'] to denote precedence if you are unsure. The following operators
are available:

Operator Description
= Assign
+,-,/,* Plus, minus, divide, multiply
| Convert to integer, and do bitwise or
& Convert to integer, and do bitwise and
% Convert to integer, and get remainder

The following functions are available:

Function Description
int(var) Returns the integer value of 'var' (rounds toward zero
abs(var) Returns the absolute value of var
sin(var) Returns the sine of the angle var (expressed in radians)
cos(var) Returns the cosine of the angle var
tan(var) Returns the tangent of the angle var
asin(var) Returns the arcsine of var
acos(var) Returns the arccosine of var
atan(var) Returns the arctangent of var
sqr(var) Returns the square of var
sqrt(var) Returns the square root of var
pow(var,var2) Returns var to the power of var2
exp(var) The same as pow(e, var), where e is Euler’s constant

(2.7182..., the base of natural logarithms).
log(var) Returns the log base e of var
log10(var) Returns the log base 10 of var
sign(var) Returns the sign of var or 0
min(var,var2) Returns the smallest value
max(var,var2) Returns the greatest value
sigmoid(var,var2) Returns sigmoid function value of x=var (var2=constraint)
atan2(var,var2) Calculates the arctangent of (var/var2)
rand(var) Returns a random integer modulo 'var'; e.g. rand(4) will

return 0, 1, 2, or 3.
band(var,var2) Boolean and, returns 1 if var or var2 is != 0
bor(var,var2) Boolean or, returns 1 if var or var2 is != 0
bnot(var) Boolean not, returns 1 if var = = 0 or 0 if var != 0
if(cond,vartrue,varfalse) If condition is nonzero, returns valtrue, otherwise returns

valfalse
equal(var,var2) Returns 1 if var = var2, else 0
above(var,var2) Returns 1 if var > var2, else 0
below(var,var2) Returns 1 if var < var2, else 0

10

