Martin
4.11.09

3D projection in milkdrop shader code

Thisisatext about how to write 3D shader code in milkdrop. Due to milkdrop’ s flat mesh, the
possibilities are limited so don’t expect you can turn milkdrop into a game engine.

Basic 3D projection

We see objectsin the “real world”, defined in athree-dimensional coordinate system (x,y,2),
through the two-dimensional screen (uv.x, uv.y).

AY

Real world coordinates xy,z
/2

Let the real world x-axis point to the right, the y- axis up, and the z axis forward in viewing
direction. Any point in the real world would appear on the screen at coordinates

v X

uv (screen)

uv.X =

N [< N|x

uv.y =

Thisisjust basic textbook projection theory, for more details see wikipedia. Actually some quite
old presets used projection in the waves equations to create 3D cubes or similar.

Game engines work similarly. A typical scenein agame is made up of thousands of individual
polygons, normally textured triangles, arranged in “real world” coordinates and then projected to
the screen. Today’ s video cards do most of the job themselves, e.g. project the objects, determine
hidden surfaces (you don’t want to see the back of a character while he islooking at you), draw the
textures etc.

Inverse projection in milkdrop shader code

How to

MD is not agame engine. No objects can be defined in the shader sections, and all we can work
with is the screen space uv, ranging from (0,0) to (1,1), - in pixelse.g. (0,0) to (1280,1024). Thereis
no z coordinate.

The video card will process the complete flat uv space in one go, i.e. within one frame, but it
processes only this space and no additional objects whatsoever. The shader code is simply executed
for each pixel in the uv space independantly, period.

1



All you do in the MD shader section must ultimately be based on the uv coordinates.

A simple example: We want to draw a 3D sky in the warp- or comp shader section. The sky will be
painted as a noise texture so we will end up with something like

float sky = tex2D (sanpl er_noi se_hqg, uv2);

“All” we need to do isto determine uv2 as afunction of uv. Let’s say we want our sky asa
horizontal noise texture in the real world space, floating at constant height y = yp, and oriented
parallel to the x and z-axes as shown below. Of course, any textureis of limited size and will be
tiled to +/- infinity both in x and in z direction. Looking “through” the screen, the horizon (at z =
infinity) will appear in the middle.

Real world coordinates x,y,z A Y

sky inuv2 space

v X

uv (screen)
In other words we define the relation between the real world and the sky surface uv2 as follows

X =UV2.X
zZ=w2y
y = y0 = const.

Note that the x,y,z coordinates are entirely artificial and have no value in milkdrop. However we
need them to define our surface. We will get rid of them in a second step by relating them to the
screen coordinates uv, using the projection laws above. This gives us five conditions in total, from
which we can now eliminate x,y,z and calculate uv2 as afunction of uv. Try this by yourself and you
will see how the projection laws will now appear in their inverted form. That iswhat | call inverse
projection. Theresultis

uv2.y = Yo
uv.y
Uv2.X = uv.x-L
uv.y

The according code could look as follows. We subtract 0.5 from uv first for convenience, to achieve
symmetry around the screen centre rather than the upper left corner.



uv -= .5;

float y0O = .2;

float z = yO/uv.y; //define a variable z just for convenience
float2 uv2 = float2 (z*uv.x, z);

float sky = tex2D (sanpl er_noi se_hq, uv2);

ret = sky;

Y ou may be surprised that the sky appears mirrored as “ground”. Thisis anatural consegquence of
MD always working on the complete uv space and therefore texturing the whole screen. The ground
isjust the solution of the above equations for z > 0, while the sky represents the areawhere z < 0. If
you don’t want this symmetry you need to actively mask out the undesired areas e.g. by multiplying
the sky with a boolean condition

float sky = tex2D (sanpler_noise_hqg, uv2) * (z <= 0);

Basically we transformed the screen surface uv into adifferently shaped or oriented surface, by a
transformation uv -> uv2, and then mapped* a texture to this surface using tex2D ().

Normally in MD there is no need to talk about surfaces, because everything is by default mapped to
theflat screen, i.e. the screen itself is the surface. What we have derived here is a separate surface
uv2 which is not identical to the screen but floating in an arbitrary “real world”, which itself in MD
must be expressed by its relation to the uv space, applying the basic projection rules.

Let mereiterate: In a game engine, we would define any “object” in real space coordinates and then
use the straightforward projection rules to project the object on the screen. In MD shader code, we
cannot work on a“per object” basis but only on the whole screen. We need to start with the screen
space uv and calculate backwards to obtain a texture space uv2 which we then use for texture

mapping.

Thisinverse projection is cumbersome, hardly intuitive (1 still struggle to explain it), and very
limited. It will work only for asmall number of simple geometrical surfaces such astilted planes,
spheroids, tubes or cones or similar. If you start playing with more complicated surfaces, you will
quickly become aware of its limitations. For instance, try to create aripple structure for the sky, e.g.
by modulating yo such that y, =1+ 0.1-sin(z), and you will immediately end up with a system of

unsolvabl e transcendental equations of the principal formx = sin(x) . Aslong as no transcendent

L “sampling* may be used as a synonym for mapping. In fact tex2D (sampler_noise_hg, uv2) takes “samples’ of a
predefined pattern at all pointsin the uv2 space. Since uv2 is derived from uv, it contains the same number of points,
e.g. 1280 x 1024.



forms emerge, mathematical software may still find a solution for some rather simple surfaces, but
chances are high that the result will go over 20 pages.

Notes

Avoiding Infinity

Since z reaches infinity in the middle of the screen, the texture will be sampled at very high
frequency there, causing ugly aliasing artefacts and a high GPU load, particularly when sampling
the warp shader output sampler_main. Therefore z should be clamped to reasonable values. The
new artefacts caused by the limiter can be hidden by some form of interpolation with a solid color,
creating an impression of distant fog or darkness. Example:

uv -= .5;

float yo = .2;

float z = clanmp (y0 / uv.y, -4, 4);

float2 uv2 = float2 (uv.x*z, z);

float sky = tex2D (sanpl er_noi se_hq, uv2);
ret = lerp (0, sky, saturate(l/powz, 2)) );

Avoiding Repetitiveness

Towards the middle of the screen, where z takes high values, the texture will betiled to the screen
in very small intervals (sampled at high frequency), and its repetitiveness may become annoyingly
apparent. There is not much you can do about that if you use the warp shader output sampler_main,
or an image as texture. For noise textures, a practical way to aleviate this problem isto sample the
texture map afew times at different frequencies. Instead of

t ex2D (sanpl er _noi se_hg, uv2)

use e.g.

0.875 * (tex2D (sanpler_noise_hg, uv2/4) + tex2D (sanpl er_noi se_hq
uv2/2)/2 + tex2D (sanpl er _noise_hq, uv2)/4)

or similar. Thiswill however use up more GPU power.

Movement and rotation

We discriminate between two cases of movement:
a) related to the whole scene (the surface)
b) related to the texture mapping only

For case a), which could for instance be arotation of the whole scene around the z-axis, the
movement equations apply to the uv coor dinates. If you implement your 3D code in the warp
shader section, you can effectively use the built-in transformations such as rot to rotate the whole
scene and sy to shift the horizon up and down. Note that MD uses different uv coordinates for the
warp and comp shader: uv in the warp shader is affected by rot, warp, zoom etc. while uv in the
comp shader is not. Therefore if you implement your code in the warp shader, you should make use
of the MD interna transformations, they are based on the vertex mesh and faster and more efficient
than in the shader directly. However if you need to implement your code in the comp shader, e.g.
because you want to use the warp shader output as texture, you will have to write your own code
such as

uv -= -5.:
float angle = 0. 3;



uv = nul (uv, float2x2(cos(angle), sin(angle), -sin(angle), cos(angle));
etc.

Note that the sines and cosines need only be calculated once per frame so please do not put them
into the shader code but move them to the frames equations section. The mul operation needs to
remain in the shader of course because it will be applied to each pixel individualy.

Case b), movement of texture only, leaves the surface alone and only shifts the texture along the
surface. This can be used e.g. to create an illusion of moving forward or sidewards within the scene,
and isapplied to uv2 only. For amovement towards the screen, use e.g.

float2 uv2 = float2 (uv.x*z, z + tine);

Overcoming the “flat” appearance

Regardless which surface you define to map your texture to, there will aways be a general
impression of flatness. The sky does not appear like clouds but rather like a slide projected onto a
flat surface, because, well, it isjust a pattern wallpapered to a surface.

To overcome this, the texture should be correlated to the surface: Dark areas in the sky should
appear at another height yo than bright areas, same as in the real world. If you look over afield,
you'll see lumps of soil and stones of different colours, texturing the field and forming its surface.
Thisiswhat we try next.

Generating profiled 3D surfaces

As said above, the inverse projection problem can only be solved for trivial surfaces, described by a
function in real world coordinates which is at least invertible. Invertibility is necessary but not
sufficient for a closed solution, as seen for the sine function, which isinvertible, but till leadsto
unsolvable equations.

When we now try to make the surface dependant of its texture, we have the problem that a noise
texture is not invertible in the first place.

A texture isdefined by color = function (uv) = tex2D (sampler_noise_hq, uv), while the inverse
would be uv = function™ (color) which apparently has no unique solution. Rather there will be
many points in the uv space for which the texture will yield a given color. Neverthelessthereisa
trick to bypass this problem.

Resuming the sky example above, to make the clouds more realistic, we want the height of the sky
be modulated with the noise texture. It would sound reasonable to ssimply add the sky texture to the
height yo. However we need the sky texture sampled in uv2 space before we can add it to yo. But we
don’'t have it, we must first calculate uv2, which itself is based on yo. Thetrick to break the circleis
to take an iterative approach: calculate the sky as above with constant yo, then add (a small fraction
of) the resulting sky texture to yp, then go back and recal cul ate the sky with the new yj etc.

In the sample code below, | start with the code above but append aloop which does four iterations.
Two to four iterations should normally be sufficient. Do not exaggerate as too much iteration will
slow your code down.

The variable depth determines the fraction of sky texture to be added to yo. The value should be
quite small; otherwise you will get ugly distortions, ssmply because the whole approach is only an
approximation and not an exact solution of the inverse projection.

It isagood ideato sprinkle abit of low quality, high frequency noise such as sampler_noise_Iqin
the end, to improve the impression of the structured profile.



uv -=.5;

float y0O = .2;

float z = y0/uv.y;

float2 uv2 = float2 (z*uv.x, z);

float sky = tex2D (sanpl er_noi se_hq, uv2);

float depth = .006;
for (int n =1;, n <= 4; n++)
{
y0 += depth*sky; //alternatively y0 *= 1+dept h*sky;
z = y0O/uv.y;
uv2 = float2 (z*uv.x, z);
sky = tex2D (sanpl er_noi se_hqg, uv2);

}
sky *= 1-.5*tex2D (sanpl er_noise_| g, uv2);
ret = sky;

And here isthe result. The sky does not really look like clouds as originally intended but that is just
amatter of colouring and fine tuning.

The code may require some refinement in practice, e.g. you may find it appropriate to scale depth
with z to avoid excessive distortions towards the horizon.

The same scheme can of course be equally applied to other surfaces/ textures. Interesting effects
can be achieved using the warp shader output sampler_main, or non-smoothed noise textures such
assampler_pw_noise 1q.



	3D projection in milkdrop shader code
	Basic 3D projection
	Inverse projection in milkdrop shader code
	How to
	Notes
	Avoiding Infinity
	Avoiding Repetitiveness
	Movement and rotation
	Overcoming the “flat” appearance


	Generating profiled 3D surfaces

