Faust Standard Libraries

Contents
Faust Libraries 24
Using the Faust Libraries 24
Contributing 25
New Functions L 26
New Libraries o 26
General Organization o 27
Coding Conventions 28
Documentation oo 28
Library Import oo 29
“Demo” Functions 30
“Standard” Functions 30
Copyright / License 30
Standard Functions 30
Analysis Tools 31
Basic Elementso o 31
Conversion 31
Effects o 32
Envelope Generators Lo 32
Filters o 32
Oscillators/Sound Generators 33
Synths L 33

Primitives
User Interface Primitives
button.
checkbox L

hslider e

analyzers.lib
Amplitude Tracking
(an.)amp_follower v
(an.)amp_follower_ud
(an.)amp_follower_ar v
Spectrum-Analyzers L L
(an.)mth_octave_analyzer
Mth-Octave Spectral Level
(an.)mth_octave_spectral_levelbe
(an.) [third|half] octave_[analyzer|filterbank]
Arbritary-Crossover Filter-Banks and Spectrum Analyzers
(an.)analyzer o
Fast Fourier Transform (fft) and its Inverse (ifft)
(an.)gortzelOpt o
(an.)gortzelComp
(an.)goertzel
(an.)fft . . . o o
(an)ifft. o e

basics.lib
Conversion Tools L
(ba.)samp2sec
(ba.)sec2samp« o i

(ba.)db2linear

34
34
34
34
35
35
35

36
36
36
36
37
38
38
39
39

40
40
41
41
41
42
42
43

(ba.)linear2db 45
(ba.)lin2LogGain 46
(ba.)log2LinGain 46
(ba.)tau2pole 46
(ba.)pole2tau 46
(ba.)midikey2hz 47
(ba.)hz2midikey 47
(ba.)semi2ratio 48
(ba.)ratio2semi 48
(ba.)pianokey2hz 48
(ba.)hz2pianokey 49
Counters and Time/Tempo Tools 49
(ba.)countdown 49
(ba.dcountup. 49
(ba.)sweep 50
(ba.)time Lo 50
(badramp 50
(ba.dtempo o1
(ba.)period 51
(ba.dpulse e 52
(ba.dpulsen 52
(ba.dcycle o L e 52
(ba.)beat 53
(ba.)pulse_countup 53
(ba.)pulse_countdown 53
(ba.)pulse_countup_loop 54
(ba.)resetCtr e 54
(ba.)pulse_countdown_lo0p 54
Array Processing/Pattern Matching 55
(ba.)count L 55
(ba.)take 55

(ba.)subseq 56
Selectors (Conditions) 56
(ba.)if o 56
(ba.)selector o7
(ba.)select2stereo 57
(ba.)selectn. 57
(ba.)selectmulti 58
Other e 59
(ba.)latch 59
(ba.)sAndH 59
(ba.)downSample 59
(ba.)peakhold 60
(ba.)peakholder 60
(ba.)impulsify 60
(ba.)automat 61
(badbpf 61
(ba.)listInterp i vt 62
(ba.dbypassl. 62
(ba.)bypass2. 62
(ba.)bypasslto2 63
(ba.)bypass_fade 63
(ba.dtoggle e 64
(ba.)on_and_off 64
(ba.)selectoutn 64
Sliding Reduce 65
(ba.)slidingReduce, 68
(ba.)slidingSumN 69
(ba.)slidingMaxN, 69
(ba.)slidingSumN 70
(ba.)slidingMeanN 70
(ba.)slidingRMSn 70

compressors.lib 71
Functions Reference L. 71
(co.)compressor_MONo v v vt 71
(co.)compressor_stereo 71
(co.)limiter_1176_R4 mono v v v v v v v e 72
(co.)limiter_1176_R4_stereo 73
delays.lib 73
Basic Delay Functions oL 73
(de.)delay e 73
(de.)fdelay o 74
(de.)sdelay e 74
Lagrange Interpolation oo 74
(de.)fdelaylti and (de.)fdelayltv 74
(de.)fdelay[nl 75

Thiran Allpass Interpolation 75
(de.)fdelay[nla 75
demos.lib 76
Analyzers 76
(dm.)mth_octave_spectral_level _demo 76

Filters o 77
(dm.)parametric_eq_demo 7
(dm.)spectral_tilt_demo 77
(dm.)mth_octave_filterbank_demo and (dm.)filterbank_demo 77

Effects o 78
(dm.)cubicnl_demo 78
(dm.)gate_demo 78
(dm.)compressor_demo 78
(dm.)moog_vecf_demo 78
(dm.)wah4_demo 79
(dm.)crybaby_demo 79

(dm.)flanger_demo 79
(dm.)phaser2_demo 79
(dm.)freeverb_demo 80
(dm.)stereo_reverb_tester 80
(dm.)fdnrevO_demo 80
(dm.)zita_rev_fdn demo 81
(dm.)zita_light 81
(dm.)zita_revl 81
Generators 82
(dm.)sawtooth_demo 82
(dm.)virtual_analog_oscillator_demo 82
(dm.)osScrs_demo v v v v it e e e 82
(dm.)velvet_noise_demo 82
(dm.)latch_demo v v v i i i e 83
(dm.)envelopes_demoo e e 83
(dm.)fft_spectral level demo 83
(dm.)reverse_echo_demo(nChans) 84
(dm.)pospass_demo 84
(dm.)exciter. o . o 85
(dm.)vocoder_demo v it 85
dx7.lib 85
(Ax.)dx7_ampf 86
(dx.)dx7_egraterisef, 86
(dx.)dx7_egraterisepercf 87
(dx.)dx7_egratedecayf 87
(dx.)dx7_egratedecaypercf 88
(dx.)dx7_eglv2peakf 88
(dx.)dx7_velsensf 89
(dx.)dx7_fdbkscalef e 89
(@x.)AXT_OD « v v o o e e 89
(dx.)dx7_algo 90
(Ax.)dAX7_ui . . . o e e e e e 91

envelopes.lib 91

Functions Reference 91
(en.)smoothEnvelope 91
(em.)ar o . e 92
(en.)arfe. e 92
(em.)are 93
(em.)asr 93
(enm.)adsr. L 93
(en.)adsre 94
(em.)asre.o 94
(en.)dx7envelope 95

filters.lib 95

Basic Filters. 96
(fi.dzero. e 96
(Fidpole. . o v o i i i 96
(fi.)integrator 97
(fi.)dcblockerat 97
(fi.)dcblocker 98

Comb Filters 98
(Fi)ff_comb. 98
(Fi)ff_fcomb 98
(fi.)ffcombfilter 99
(fi)fb_comb. 99
(fi)fb_fcomb 100
(Fidrevl . . . o . o e 100
(fi.)fbcombfilter and (fi.)ffbcombfilter 100
(fi.)allpass_combt vt 101
(fi.)allpass_fcomb 102
(Fi)rev2. e 102
(fi.)allpass_fcombb and (fi.)allpass_fcombla 103

(Fiidr . . o e 103
(Fi)fir . ..o 103
(fi.)convand (fi.)convN 104
(fi)tf1, (fi)tf2and (Fi.)t£3 104
(fidmotchw o 105
Direct-Form Second-Order Biquad Sections 105
(fi.)tf21, (£i.)t£22, (fi.)tf22t and (fi.)tf21t 106
Ladder/Lattice Digital Filters 106
(£1.)av2sV o o 106
(F1.)bvav2nuvo 107
(F1)437 18E2 © o v e e 107
(fidallpassnto it 108
(Fi)didr kK1 e 108
(fi)allpassnklt 109
(fi)ddr_datl e 109
(fi.dallpassnimt 109
(Fi)idr_nl 110
(fi.)allpassnnlt L 110
Useful Special Cases o i i 111
(F1i0t£2mp oo 111
(F1idWET . o o o 111
(Ei)nlf2. . . . e 112
(Fidapnl 112
Ladder/Lattice Allpass Filters 113
(fi)allpassn o v vt vt 113
(fi.)allpassnn oo vt 113
(fi)allpasskl oo vt 114
(fi)allpassim oo vttt i 114
Digital Filter Sections Specified as Analog Filter Sections 115
(fidtf2sand (fi.)tf2snp 115

(F1)t£3s1E . . . o L 116

(Fi)tfls . . . o o 116
(Fi)ef2sb 117
(Fi)tflsb o L 117
Simple Resonator Filters 117
(fidresonlp. v i i e 117
(fidresonhp. 118
(fidresonbp. oL 118
Butterworth Lowpass/Highpass Filters 119
(F1i.)1oWpass v v v v vt 119
(fidhighpass 119
(fi.)lowpassO_highpassl 120
Special Filter-Bank Delay-Equalizing Allpass Filters 120
(fi.)lowpass_plus|minus_highpass 120
Elliptic (Cauer) Lowpass Filters 120
(fi)lowpass3e 120
(fi.)lowpassBe 121
Elliptic Highpass Filters 122
(fi.dhighpass3e 122
(fi.)highpass6e 122
Butterworth Bandpass/Bandstop Filters 122
(fidbandpass oL 122
(fidbandstop 123
Elliptic Bandpass Filters 124
(fi.)bandpassbe 124
(fi.)bandpassl2e Lo 124
(fi.)pospass. 124
Parametric Equalizers (Shelf, Peaking) 125
(fi)low_shelf e 125
(fi.)high_shelf 126
(fidpeak_eq. . - v v v v i 127

(fi)peak_eq_Cq . . « v v v v it 127

(fidpeak_eq Tm 127
(fi.)spectral_tilt, 128
(fi.)levelfilter e v i vt it 129
(fi.)levelfilterN 129
Mth-Octave Filter-Banks 130
(fi.)mth_octave_filterbank[n] 131
Arbitrary-Crossover Filter-Banks and Spectrum Analyzers 131
(fi.)filterbank 131
(fi.)filterbanki 132
hoa.lib 132
(ho.)encodero 133
(ho.)decoder 133
(ho.)decoderStereo 134
Optimization Functions 134
(ho.)optimBasic 134
(ho.)optimMaxRe 134
(ho.)optimInPhase 135
Usage . . . o oo i e 135
(hodwider 135
(ho.dmap 136
(ho.)rotate 136
interpolators.lib 136
(it.)interpolate_linear 136
(it.)interpolate_cosine 137
(it.)interpolate_cubic 137
(it.)interpolator_linear 138
(it.)interpolator_cosine 138
(it.)interpolator_cubic 139
(it.)interpolator_select 139

maths.lib 140
Functions Reference Lo L. 140
@a.)SR . . . e 140
Ma.)BS . .o 140
(ma.)PT 140
(ma .)INFINITYo 141
@a.)FTZo e 141
(ma.)neg e 141
(ma.)sub(x,y) 142
ma.)inv 142
(ma.)cbrt o 142
(Ma.)hypot . . . o o 142
(ma.)ldexp . .« o v e 142
(ma.)scalbo 143
Ma.)1oglp . v v v v 143
(ma.)logb. 143
(ma.)ilogb 143
Ma.)1og2. 144
(ma.)expml L 144
(ma.)acosh 144
(ma.dasinh 144
(ma.)atanh 145
(ma.)sinh. 145
(ma.dcosh. 145
(madtanh 145
(ma.derf 146
(ma.derfc. e 146
(ma.)gamma 146
(ma.)lgamma 146
Ma.)JO . . o 147
ma.)Jl . . o 147

(ma.)Jn o 147
(ma.)YO e 148

ma.)YL . . 148

(ma.)¥n 148
(ma.)fabs, (ma.)fmax, (ma.)fmin 148
(ma.dnp2 149
(ma.)frac.o 149
(ma.)modulo 149
(ma.)isnan 150
(ma.)isinf 150
(ma.)chebychev 150
(ma.)chebychevpoly, 151
(ma.)diffn 151
(ma.)signum 152
(ma.)nextpow2 152
misceffects.lib 152
Dynamic. e 152
(ef.Jcubicnl 152
(ef.)gate_mono 153
(ef.)gate_stereo 154
Filtering 154
(ef.)speakerbp 154
(ef.)piano_dispersion_filter 155
(ef.)stereo_width 156
Meshes e 156
(ef.d)mesh_square 156
(ef.)reverseEchoN(nChans,delay) 157
(ef.)reverseDelayRamped(delay,phase) 158
(ef.)uniformPanToStereo(nChans) 159
Time Based 159

12

(ef.)echo. L 159
Pitch Shiftingo 160
(ef.)transpose 160
noises.lib 160
Functions Reference 160
(no.)moise 160
(no.)multirandom Lo 160
(no.)multinoise 161
(no.)noises L 161
(no.)pink_noise 161
(no.)pink_noise_vm 162
(no.)1lfnoise, (no.)1lfnoise0 and (no.)lfnoiseN 162
(no.)sparse_noise_vm 163
(no.)velvet_noise_vm i e 163
(no.)gnoise 164
oscillators.lib 164
Wave-Table-Based Oscillators 164
(os.)sinwaveformo 164
(os.)coswaveform 165
(os.)phasor 165
(os.)hs_phasor 166
(os.)oscsino 166
(os.)oscsinteensy 166
(os.)hs_oscsin 167
(0S.)0SCCOS L 167
(08.)0SCP 167
(0S.)oSCl . . v o L e 168
LFOs e 168
(os.)1f _dmptrain 168
(0s.)1f_pulsetrainpos 168

(os.)1f_pulsetrain 169
(0s.)1f_squarewavepos 169
(os.)1f_squarewave 170
(os.)1f_trianglepos 170
(os.)1f _triangle 170
Low Frequency Sawtooths, 171
(08)1f_TawsSaw v v e e e 171
(os.)1f_sawpos_phase 171
(08.)1f_8aWpOS 172
(0sD1f_saw o e 172
Bandlimited Sawtooth oo 172
(os.)sawNp 174
(08.)8aw2dpwo 174
(0s.)saw3 L 174
(os.)sawtooth 174
(os.)saw2f2 L 174
(os.)saw2fd 175
Bandlimited Pulse, Square, and Impulse Trains 175
(os.)pulsetrainN Lo 175
(os.)pulsetrain 175
(os.)squareN. 176
(os.)square 176
(os.)impulse. 176
(os.)imptrainN L 177
(os.)imptraino 177
(os.)triangleN 177
(os.)triangle 177
Filter-Based Oscillators 178
(os.)oscb. oL 178
(0s.)osCrq 178
(0S.)0SCTS . . . o o v i e 179

(08.)0SCIrC 179

(0S.)0SCS . . .« o L e 180
(0S.)0SC « . . o L 180
Waveguide-Resonator-Based Oscillators 180
(0S.)0SCW . .« . o o o e 180
(0S.)OSCWS . .« o v v vt 181
(0S.)0SCWQ « . v v v v v 181
(0S.)OSCW . . . o o vt i 182
Casio CZ Oscillators 182
(08.)CZsawW o e 183
(os.)CZsquare 183
(os.)CZpulse. 183
(0s.)CZsinePulse 184
(0s.)CZhalfSine i 184
(0s.)CZresSaw o . e 185
(os.)CZresTriangle, 185
(08.)CZresTrap v v v v v vt i 185
Filter-Based Oscillators 186
(os.)quadosc. 186
phaflangers.lib 186
Functions Reference L. 186
(pf.)flanger mono 186
(pf.)flanger_stereo 187
(pf.)phaser2_mono 187
(pf.)phaser2_stereo 188
physmodels.lib 189
Global Variables 190
(pm.)speed0fSound 190
(pm.)maxLength 190
Conversion Tools L 190

(pm.)E21 . . . 190
(pm.)12F . . . e 191
(pm.)12s . . . L 191
Bidirectional Utilities 0oL 192
(pm.)basicBlock 192
(pm.)chain 192
(pm.)inLeftWave 192
(pm.)inRightWave 193
(pm.)in 193
(pm.)outLeftWave 193
(pm.)outRightWave 194
(pm.dout 194
(pm.)terminations 194
(pm.)1Termination 195
(pm.)rTermination 195
(pm.)closeInsl 196
(pm.)closeOuts 196
(pm.)endChain 196
Basic Elements oo oo 196
(pm.)waveguideN 196
(pm.)waveguide 197
(pm.)bridgeFilter, 197
(pm.)modeFilter, 198
String Instruments oL L 198
(pm.)stringSegment 198
(pm.)openString 199
(pm.)nylonString 199
(pm.)steelString 200
(pm.)openStringPick 200
(pm.)openStringPickUp 201
(pm.)openStringPickDown 201

(pm.)ksReflexionFilter 202
(pm.)rStringRigidTermination 202
(pm.)1StringRigidTermination 202
(pm.)elecGuitarBridge 203
(pm.)elecGuitarNuts 203
(pm.)guitarBridge 203
(pm.)guitarNuts 204
(pm.)idealString 204
(pm.dks . o oL 204
(pm.)ks_ui MIDI oo vt 205
(pm.)elecGuitarModel 205
(pm.)elecGuitar 206
(pm.)elecGuitar_ui MIDI 206
(pm.)guitarBody 206
(pm.)guitarModel 207
(pm.)guitaro 207
(pm.)guitar_ui_MIDI 208
(pm.)nylonGuitarModel 208
(pm.)nylonGuitar 208
(pm.)nylonGuitar_ui_MIDI 209
(pm.)modeInterpRes 209
(pm.)modularInterpBody 210
(pm.)modularInterpStringModel 210
(pm.)modularInterpInstr 210
(pm.)modularInterpInstr_ui MIDI 211
Bowed String Instruments L. 211
(pm.)bowTable 211
(pm.)violinBowTable 212
(pm.)bowInteraction 212
(pm.)violinBow 213
(pm.)violinBowedString 213

(pm.)violinNuts 213
(pm.)violinBridge 214
(pm.)violinBody 214
(pm.)violinModel 214
(pm.)violin uio 215
(pm.)violin_ui MIDIo i e 215
Wind Instruments Lo oL 215
(pm.)openTube 216
(pm.)reedTable 216
(pm.)fluteJetTable 216
(pm.)brassLipsTable 217
(pm.)clarinetReed 217
(pm.)clarinetMouthPiece 218
(pm.)brassLipso 218
(pm.)fluteEmbouchure 219
(pm.)wBell 219
(pm.)fluteHead 219
(pm.)fluteFoot 220
(pm.)clarinetModel 220
(pm.)clarinetModel _ui 220
(pm.)clarinet_ui oo 221
(pm.)clarinet_ui_MIDI 221
(pm.)brassModel 221
(pm.)brassModel _ui 222
(pm.)brass_uio 222
(pm.)brass_ui_MIDI 222
(pm.)fluteModel 223
(pm.)fluteModel_ui 223
(pm.)flute_ui oL 224
(pm.)flute_ui_MIDI 224
Exciters 224

(pm.)impulseExcitation 224
(pm.)strikeModel 225
(pm.)strike 225
(pm.)pluckString 225
(pm.)blower 226
(pm.)blower_ui 226
Modal Percussions Lo 227
(pm.)djembeModel 227
(pm.)djembe 227
(pm.)djembe_ui_MIDI 228
(pm.)marimbaBarModel 228
(pm.)marimbaResTube 229
(pm.)marimbaModel 229
(pm.)marimba. 229
(pm.)marimba_ui MIDI 230
(pm.)churchBellModel 230
(pm.)churchBell 231
(pm.)churchBell ui 232
(pm.)englishBellModel 232
(pm.)englishBell 233
(pm.)englishBell ui 233
(pm.)frenchBellModel 234
(pm.)frenchBell 234
(pm.)frenchBell_ui 235
(pm.)germanBellModel 235
(pm.)germanBell 236
(pm.)germanBell ui 237
(pm.)russianBellModel 237
(pm.)russianBell 238
(pm.)russianBell ui 238
(pm.)standardBellModel 239

(pm.)standardBell 239
(pm.)standardBell_ui 240
Vocal Synthesis Lo 240
(pm.)formantValues 240
(pm.)voiceGender 241
(pm.)skirtWidthMultiplier 241
(pm.)autobendFreq 242
(pm.)vocalEffort 242
(pm.)fof . . . L 243
(pm.)fofSH 243
(pm.)fofCycle 243
(pm.)fofSmooth 244
(pm.)formantFilterFofCycle 244
(pm.)formantFilterFofSmooth, 245
(pm.)formantFilterBP 246
(pm.)formantFilterbank 246
(pm.)formantFilterbankFofCycle 247
(pm.)formantFilterbankFofSmooth 247
(pm.)formantFilterbankBP 248
(pm.)SFFormantModel 248
(pm.)SFFormantModelFofCycle 249
(pm.)SFFormantModelFofSmooth 249
(pm.)SFFormantModelBP 250
(pm.)SFFormantModelFofCycle_ui 250
(pm.)SFFormantModelFofSmooth_ui 250
(pm.)SFFormantModelBP_ui 251
(pm.)SFFormantModelFofCycle_ui_MIDI 251
(pm.)SFFormantModelFofSmooth_ui_MIDI 251
(pm.)SFFormantModelBP_ui MIDI 251
Misc Functions oo oo 252
(pm.)allpassNL 252
modalModel 252

reducemaps.lib

reverbs.lib

(re.

(re

Feedback Delay Network (FDN) Reverberators

(re
(re
(re
(re
Freeverb
(re

(re

routes.lib

Functions Reference

(ro
(ro
(ro
(ro
(ro
(ro

(ro

signals.lib

Functions Reference

(si.

(si

(si

(si.

(si

.)fdnrev0.

.)zita_rev_fdn

.)zita_revl_stereo

.)zita_revl_ambi

.)mono_freeverb

.)stereo_freeverb

.)cross

.Jcrossnn.

.Jcrossnl.

.)interleave

.)butterfly

.Dhadamard

.)recursivize

253

253
253
253
254
254
254
255
255
256
256
256
257

257
257
257
258
258
258
259
259
260

21

(si.
(si.
(si.
(si.
(si.
(si.
(si.
(si.

(si.

(so.
(so.

(so.

spats.lib

(sp.
(sp.
(sp.

synths.lib

(sy.
(sy.
(sy.
(sy.
(sy.
(sy.

)popFilterPerc . .

)dubDub

)sawTrombone

) combString

YadditiveDrum

22

vaeffects.lib 271

Moog Filters 272
(ve.dmoog_vef 272
(ve.)moog_vcf _2b[n] 272
(ve.)moogladder 273
(ve.)moogHalflLadder 274
(ve.)diodeLadder 274

Korg 35 Filters 275
(ve.)korg35LPF 275
(ve.)korg3B6HPF 276

Oberheim Filters 276
(ve.)oberheim 276
(ve.)oberheimBSF 277
(ve.)oberheimBPF 277
(ve.)oberheimHPF 277
(ve.)oberheimLPF 278

Sallen Key Filters 278
(ve.)sallenKeyOnePole 279
(ve.)sallenKeyOnePoleLPF 279

normFreq: normalized frequency (0-1) 279
(ve.)sallenKeyOnePoleHPF 279
(ve.)sallenKey2ndOrder 280
(ve.)sallenKey2ndOrderLPF 280
(ve.)sallenKey2ndOrderBPF 281
(ve.)sallenKey2ndOrderHPF 281

Effects o 281
(vedwahd 281
(vedautowah 282
(ve.dcrybaby 282
(ve.dvocoder 282

23

Licenses 283
STK 4.3 License 283
LGPL License 284

Faust Libraries

NOTE: this documentation was automatically generated using pandoc.
This page provides information on how to use the Faust libraries.

The /1libraries folder contains the different Faust libraries. If you wish to add
your own functions to this library collection, you can refer to the “Contributing”
section providing a set of coding conventions.

WARNING: These libraries replace the “old” Faust libraries. They are
still being beta tested so you might encounter bugs while using them.
If your codes still use the “old” Faust libraries, you might want to try
to use Bart Brouns’ script that automatically makes an old Faust code
compatible with the new libraries: https://github.com/magnetophon/
faustCompressors/blob/master /newlib.sh. If you find a bug, please report it at
rmichon_ at_ ccrma_ dot_ stanford dot_edu. Thanks ;)!

Using the Faust Libraries

The easiest and most standard way to use the Faust libraries is to import
stdfaust.lib in your Faust code:

import ("stdfaust.lib");

This will give you access to all the Faust libraries through a series of environ-
ments:

e sf: all.lib

e an: analyzers.lib

e ba: basics.lib

e co: compressors.lib
e de: delays.lib

e dm: demos.lib

e dx: dx7.1ib

e en: envelopes.lib

e fi: filters.1lib

e ho: hoa.lib

e it: interpolators.lib

24

https://pandoc.org/
https://github.com/magnetophon/faustCompressors/blob/master/newlib.sh
https://github.com/magnetophon/faustCompressors/blob/master/newlib.sh

e ma: maths.1lib

o ef: misceffects.lib
e 0s: oscillators.lib
e no: noises.lib

e pf: phaflangers.lib
e pm: physmodels.lib
e rm: reducemaps.lib
e re: reverbs.lib

e ro: routes.lib

e si: signals.lib

e so: soundfiles.lib
e sp: spats.lib

e sy: synths.lib

o ve: vaeffects.lib

e wa: webaudio.lib

Environments can then be used as follows in your Faust code:

import ("stdfaust.lib");
process = os.osc(440);

In this case, we're calling the osc function from oscillators.lib.

You can also access all the functions of all the libraries directly using the sf
environment:

import ("stdfaust.lib");
process = sf.osc(440);

Alternatively, environments can be created by hand:

os = library("oscillators.lib");
process = os.osc(440);

Finally, libraries can be simply imported in the Faust code (not recommended):

import ("oscillators.1lib");
process = osc(440);

Contributing

If you wish to add a function to any of these libraries or if you plan to add a
new library, make sure that you follow the following conventions:

25

New Functions

//
//
//
//
//
//
//
//
//
//
//

e All functions must be preceded by a markdown documentation header
respecting the following format (open the source code of any of the libraries
for an example):

————————————————— functionName--—-———--------—————-
Description

Usage

¢

Usage Example

ccc

Where:

* argumentl: argument 1 description

o Every time a new function is added, the documentation should be updated
simply by running make doclib.
o The environment system (e.g. os.osc) should be used when calling a
function declared in another library (see the section on Using the Faust
Libraries).
e Try to reuse exisiting functions as much as possible.
¢ If you have any question, send an e-mail to rmichon_at_ccrma_ dot_ stanford_dot_ edu.

New Libraries

//
//
//
//
//

¢ Any new “standard” library should be declared in stdfaust.lib with its
own environment (2 letters - see stdfaust.lib).

¢ Any new “standard” library must be added to generateDoc.

¢ Functions must be organized by sections.

e Any new library should at least declare a name and a version.

e The comment based markdown documentation of each library must re-
spect the following format (open the source code of any of the libraries for
an example):

#FH R LibraryName #########FHH#HIHH
Description

* Section Name 1
* Section Name 2

26

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Another option is to import ‘stdfaust.lib‘ which already contains the ‘[..

[..

*
It should be used using the ¢
ccCc¢

[...] = library("libraryName") ;
process = [...].functionCall;
ccc

environment:

ccc¢

import ("stdfaust.1lib");

process = [...].functionCall;
ccc

.]¢ environment:

[[HH

//
//
//

Description

Section Name

General Organization

Only the libraries that are considered to be “standard” are documented:

e analyzers.lib

e basics.lib

e compressors.lib
e delays.lib

e demos.lib

e dx7.1ib

e envelopes.lib

e filters.lib

e hoa.lib

e interpolators.lib
e maths.1lib

e misceffects.lib
e oscillators.lib
e noises.lib

e phaflangers.lib
e physmodels.lib

27

o If you have any question, send an e-mail to rmichon_ at_ ccrma_ dot_ stanford_ dot_ edu.

e

e reducemaps.lib

e reverbs.lib

e routes.lib

e signals.lib

¢ soundfiles.lib

e spats.lib

e synths.lib

e tonestacks.lib (not documented but example in /examples/misc)
e tubes.lib (not documented but example in /examples/misc)
e vaeffects.lib

e webaudio.lib

Other deprecated libraries such as music.lib, etc. are present but are not
documented to not confuse new users.

The doumentation of each library can be found in /documentation/library.html
or in /documentation/library.pdf.

The /examples directory contains all the examples from the /examples folder
of the Faust distribution as well as new ones. Most of them were updated
to reflect the coding conventions described in the next section. Examples are
organized by types in different folders. The /o01d folder contains examples that
are fully deprecated, probably because they were integrated to the libraries and
fully rewritten (see freeverb.dsp for example). Examples using deprecated
libraries were integrated to the general tree but a warning comment was added
at their beginning to point readers to the right library and function.

Coding Conventions

In order to have a uniformized library system, we established the following con-
ventions (that hopefully will be followed by others when making modifications
to them :-)).

Documentation

e All the functions that we want to be “public” are documented.

e We used the faust2md “standards” for each library: //### for main title
(library name - equivalent to # in markdown), //=== for section declara-
tions (equivalent to ## in markdown) and //--- for function declarations
(equivalent to #### in markdown - see basics.1lib for an example).

e Sections in function documentation should be declared as #### markdown
title.

o Each function documentation provides a “Usage” section (see
basics.lib).

28

Library Import

To prevent cross-references between libraries we generalized the use of the
library("") system for function calls in all the libraries. This means that
everytime a function declared in another library is called, the environment cor-
responding to this library needs to be called too. To make things easier, a
stdfaust.lib library was created and is imported by all the libraries:

an = library("analyzers.lib");
ba = library("basics.lib");

co = library("compressors.lib");
de = library("delays.lib");

dm = library("demos.lib");

dx = library("dx7.1lib");

en = library("envelopes.lib");
fi = library("filters.1lib");

ho = library("hoa.lib");

it = library("interpolators.lib");
ma = library("maths.1ib");

ef = library("misceffects.lib");
os = library("oscillators.lib");
no = library("noises.lib");

pf = library("phaflangers.lib");
pm = library("physmodels.1lib");
rm = library("reducemaps.lib");
re = library("reverbs.1lib");

ro = library("routes.lib");

sp = library("spats.lib");

si = library("signals.lib");

so = library("soundfiles.lib");
sy = library("synths.lib");

ve = library("vaeffects.lib");
wa = library("webaudio.lib");

For example, if we wanted to use the smooth function which is now declared in
signals.lib, we would do the following:

import ("stdfaust.lib");
process = si.smooth(0.999);

This standard is only used within the libraries: nothing prevents coders to
still import signals.1ib directly and call smooth without ro., etc. It means
symbols and function names defined within a library have to be unique to not
collide with symbols of any other libraries.

29

“Demo” Functions

“Demo” functions are placed in demos.lib and have a built-in user interface
(UI). Their name ends with the _demo suffix. Each of these function have a
.dsp file associated to them in the /examples folder.

Any function containing Ul elements should be placed in this library and respect
these standards.

“Standard” Functions

“Standard” functions are here to simplify the life of new (or not so new)
Faust coders. They are declared in /libraries/doc/standardFunctions.md
and allow to point programmers to preferred functions to carry out a specific
task. For example, there are many different types of lowpass filters declared in
filters.lib and only one of them is considered to be standard, etc.

Copyright / License

Now that Faust libraries are less author specific, each function will normally
have its own copyright-and-license line in the library source (the .1ib file, such
as analyzers.lib). If not, see if the function is defined within a section of
the .1lib file stating the license in source-code comments. If not, then the
copyright and license given at the beginning of the .1ib file may be assumed,
when present. If not, run git blame on the .1lib file and ask the person who
last edited the function!

Note that it is presently possible for a library function released under one li-
cense to utilize another library function having some different license. There is
presently no indication of this situation in the Faust compiler output, but such
notice is planned. For now, library contributors should strive to use only library
functions having compatible licenses, and concerned end-users must manually
determine the union of licenses applicable to the library functions they are using.

Standard Functions

Dozens of functions are implemented in the Faust libraries and many of them
are very specialized and not useful to beginners or to people who only need
to use Faust for basic applications. This section offers an index organized by
categories of the “standard Faust functions” (basic filters, effects, synthesizers,
etc.). This index only contains functions without a user interface (UI). Faust
functions with a built-in UI can be found in demos.1lib.

30

Analysis Tools

Function Type Function Name Description

Classic analog audio envelope follower
Octave analyzers

Amplitude Follower
Octave Analyzers

an.amp_follower
an.mth_octave_analyzer [N]

Basic Elements

Function Type Function Name Description

Beats ba.beat Pulses at a specific tempo
Block si.block Terminate n signals

Break Point Function ba.bpf Beak Point Function (BPF)
Bus si.bus Bus of n signals

Bypass (Mono) ba.bypassl Mono bypass

Bypass (Stereo) ba.bypass2 Stereo bypass

Count Elements ba.count Count elements in a list

Count Down

ba.countdown

Samples count down

Count Up ba.countup Samples count up

Delay (Integer) de.delay Integer delay

Delay (Float) de.fdelay Fractional delay

Down Sample ba.downSample Down sample a signal
Impulsify ba.impulsify Turns a signal into an impulse
Sample and Hold ba.sAndH Sample and hold

Signal Crossing ro.cross Cross n signals

Smoother (Default) si.smoo Exponential smoothing
Smoother si.smooth Exponential smoothing with controllable pole
Take Element ba.take Take en element from a list
Time ba.time A simple timer
Conversion

Function Type

Function Name

Description

dB to Linear
Linear to dB

ba.
ba.

db2linear
linear2db

Converts dB to linear values
Converts linear values to dB

MIDI Key to Hz ba.midikey2hz
Hz to MIDI Key ba.hz2midikey
Pole to T60 ba.pole2tau
Samples to Seconds ba.samp2sec
Seconds to Samples ba.sec2samp
T60 to Pole ba.tau2pole

Converts a MIDI key number into a frequency
Converts a frequency into MIDI key number
Converts a pole into a time constant (t60)
Converts samples to seconds

Converts seconds to samples

Converts a time constant (t60) into a pole

31

Effects

Function Type

Function Name

Description

Auto Wah ve.autowah Auto-Wah effect

Compressor CO.Compressor_mono Dynamic range compressor
Distortion ef.cubicnl Cubic nonlinearity distortion
Crybaby ve.crybaby Crybaby wah pedal

Echo ef .echo Simple echo

Flanger pf.flanger_stereo Flanging effect

Gate ef .gate_mono Mono signal gate

Limiter co.limiter_1176_R4_mono Limiter

Phaser pf .phaser2_stereo Phaser effect

Reverb (FDN) re.fdnrev0 Feedback delay network reverberator
Reverb (Freeverb) re.mono_freeverb Most “famous” Schroeder reverberator
Reverb (Simple) re.jcrev Simple Schroeder reverberator
Reverb (Zita) re.zita_revl_stereo High quality FDN reverberator
Panner Sp.panner Linear stereo panner

Pitch Shift ef .transpose Simple pitch shifter

Panner sSp.spat N outputs spatializer

Speaker Simulator ef.speakerbp Simple speaker simulator
Stereo Width ef.stereo_width Stereo width effect

Vocoder ve.vocoder Simple vocoder

Wah ve.wah4 Wah effect

Envelope Generators

Function Type Function Name Description

ADSR en.adsr Attack/Decay/Sustain/Release envelope generator
AR en.ar Attack/Release envelope generator

ASR en.asr Attack/Sustain/Release envelope generator
Exponential en.smoothEnvelope Exponential envelope generator

Filters

Function Type

Function Name

Description

Bandpass (Butterworth)
Bandpass (Resonant)
Bandstop (Butterworth)
Biquad

Comb (Allpass)

Comb (Feedback)

fi

i.bandpass
.resonbp
i.bandstop
i.tf2
i.allpass_fcomb
.fb_fcomb

32

Generic butterworth bandpass
Virtual analog resonant bandpass
Generic butterworth bandstop
“Standard” biquad filter
Schroeder allpass comb filter
Feedback comb filter

Function Type

Function Name

Description

Comb (Feedforward) fi
DC Blocker fi
Filterbank fi
FIR (Arbitrary Order) fi
High Shelf fi
Highpass (Butterworth) fi
Highpass (Resonant) fi
IIR (Arbitrary Order) fi.
Level Filter fi
Low Shelf fi
Lowpass (Butterworth) — fi
Lowpass (Resonant) fi
Notch Filter fi
Peak Equalizer fi

.ff_fcomb
.dcblocker
.filterbank
Jfir
.high_shelf
.highpass
.resonhp

iir

.levelfilter
.low_shelf
.lowpass
.resonlp
.notchw
.peak_eq

Feed-forward comb filter.
Default dc blocker

Generic filter bank

Nth-order FIR filter

High shelf

Nth-order Butterworth highpass
Virtual analog resonant highpass
Nth-order IIR filter

Dynamic level lowpass

Low shelf

Nth-order Butterworth lowpass
Virtual analog resonant lowpass
Simple notch filter

Peaking equalizer section

Oscillators/Sound Generators

Function Type

Function Name

Description

Impulse

Impulse Train

Phasor

Pink Noise

Pulse Train

Pulse Train (Low Frequency)
Sawtooth

Sawtooth (Low Frequency)
Sine (Filter-Based)

Sine (Table-Based)

Square

Square (Low Frequency)
Triangle

Triangle (Low Frequency)
White Noise

os.impulse
os.imptrain
os.phasor

Generate an impulse on start-up

Band-limited impulse train
Simple phasor

no.pink_noise
os.pulsetrain
os.1lf_imptrain
os.sawtooth
os.lf saw
0s8.08C8

0S.08C
os.square

os.1lf_squarewave

os.triangle
os.1lf_triangle
no.noise

Pink noise generator
Band-limited pulse train
Low-frequency pulse train
Band-limited sawtooth wave
Low-frequency sawtooth wave
Sine oscillator (filter-based)
Sine oscillator (table-based)
Band-limited square wave
Low-frequency square wave
Band-limited triangle wave
Low-frequency triangle wave
White noise generator

Synths

Function Type

Function Name

Description

Additive Drum
Bandpassed Sawtooth
Comb String

sy.additiveDrum
sy .dubDub
sy.combString

33

Additive synthesis drum
Sawtooth through resonant bandpass
String model based on a comb filter

Function Type Function Name Description

FM sy.fm Frequency modulation synthesizer
Lowpassed Sawtooth sy.sawTrombone “Trombone” based on a filtered sawtooth
Popping Filter sy.popFilterPerc Popping filter percussion instrument
Primitives

User Interface Primitives
button

Creates a button in the user interface. The button is a primitive circuit with
one output and no input. The signal produced by the button is 0 when not
pressed and 1 while pressed.

Usage
button("play") : _;

Where "play" is the name of the button in the interface.

checkbox

Creates a checkbox in the user interface. The checkbox is a primitive circuit
with one output and no input. The signal produced by the checkbox is 0 when
not checked and 1 when checked.

Usage
checkbox("play") : _;

Where "play" is the name of the checkbox in the interface.

34

hslider
Creates a horizontal slider in the user interface. The hslider is a primitive

circuit with one output and no input. hslider produces a signal between a
minimum and a maximum value based on the position of the slider cursor.

Usage

hslider("volume",-10,-70,12,0.1) : _;

Where volume is the name of the slider in the interface, -10 the default value of
the slider when the program starts, =70 the minimum value, 12 the maximum
value, and 0.1 the step the determines the precision of the control.

nentry

Creates a numerical entry in the user interface. The nentry is a primitive circuit
with one output and no input. nentry produces a signal between a minimum
and a maximum value based on the user input.

Usage
nentry("volume",-10,-70,12,0.1) : _;

Where volume is the name of the numerical entry in the interface, -10 the
default value of the entry when the program starts, =70 the minimum value,
12 the maximum value, and 0.1 the step the determines the precision of the
control.

vslider
Creates a vertical slider in the user interface. The vslider is a primitive circuit

with one output and no input. vslider produces a signal between a minimum
and a maximum value based on the position of the slider cursor.

35

Usage
vslider("volume",-10,-70,12,0.1) : _;

Where volume is the name of the slider in the interface, =10 the default value of
the slider when the program starts, =70 the minimum value, 12 the maximum
value, and 0.1 the step the determines the precision of the control.

analyzers.lib

Faust Analyzers library. Its official prefix is an.

Amplitude Tracking
(an.)amp_follower

Classic analog audio envelope follower with infinitely fast rise and exponential
decay. The amplitude envelope instantaneously follows the absolute value going
up, but then floats down exponentially. amp_follower is a standard Faust
function.

Usage
_ : amp_follower(rel)
Where:

o rel: release time = amplitude-envelope time-constant (sec) going down

Reference

e Musical Engineer’s Handbook, Bernie Hutchins, Ithaca NY, 1975 Elec-
tronotes Newsletter, Bernie Hutchins

(an.)amp_follower_ud

Envelope follower with different up and down time-constants (also called a “peak
detector”).

36

Usage
_ : amp_follower_ud(att,rel)
Where:

o att: attack time = amplitude-envelope time constant (sec) going up
« rel: release time = amplitude-envelope time constant (sec) going down

Note

We assume rel >> att. Otherwise, consider rel ~ max(rel,att). For audio, att is
normally faster (smaller) than rel (e.g., 0.001 and 0.01). Use amp_follower_ar
below to remove this restriction.

Reference

¢ “Digital Dynamic Range Compressor Design — A Tutorial and Analysis”,
by Dimitrios Giannoulis, Michael Massberg, and Joshua D. Reiss http:
/ /www.eecs.qmul.ac.uk/~josh/documents/GiannoulisMassbergReiss-
dynamicrangecompression-JAES2012.pdf

(an.)amp_follower_ar

Envelope follower with independent attack and release times. The release can
be shorter than the attack (unlike in amp_follower_ud above).

Usage
_ : amp_follower_ar(att,rel) : _;

e Author Jonatan Liljedahl, revised by RM

37

http://www.eecs.qmul.ac.uk/~josh/documents/GiannoulisMassbergReiss-dynamicrangecompression-JAES2012.pdf
http://www.eecs.qmul.ac.uk/~josh/documents/GiannoulisMassbergReiss-dynamicrangecompression-JAES2012.pdf
http://www.eecs.qmul.ac.uk/~josh/documents/GiannoulisMassbergReiss-dynamicrangecompression-JAES2012.pdf

Spectrum-Analyzers

Spectrum-analyzers split the input signal into a bank of parallel signals, one
for each spectral band. They are related to the Mth-Octave Filter-Banks in
filters.lib. The documentation of this library contains more details about
the implementation. The parameters are:

o M: number of band-slices per octave (>1)
o N: total number of bands (>2)
o ftop = upper bandlimit of the Mth-octave bands (<SR/2)

In addition to the Mth-octave output signals, there is a highpass signal contain-
ing frequencies from ftop to SR/2, and a “dc band” lowpass signal containing
frequencies from 0 (dc¢) up to the start of the Mth-octave bands. Thus, the N
output signals are

highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2~(-M*(N-1)))

A Spectrum-Analyzer is defined here as any band-split whose bands span the
relevant spectrum, but whose band-signals do not necessarily sum to the original
signal, either exactly or to within an allpass filtering. Spectrum analyzer outputs
are normally at least nearly “power complementary”, i.e., the power spectra
of the individual bands sum to the original power spectrum (to within some
negligible tolerance).

Increasing Channel Isolation

Go to higher filter orders - see Regalia et al. or Vaidyanathan (cited below)
regarding the construction of more aggressive recursive filter-banks using elliptic
or Chebyshev prototype filters.

References

e “Tree-structured complementary filter banks using all-pass sections”,
Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484,
Dec. 1987

e “Multirate Systems and Filter Banks”, P. Vaidyanathan, Prentice-Hall,
1993

o Elementary filter theory: https://ccrma.stanford.edu/~jos/filters/

(an.)mth_octave_analyzer

Octave analyzer. mth_octave_analyzer [N] are standard Faust functions.

38

Usage

_ @ mth_octave_analyzer(0,M,ftop,N) : par(i,N,_); // Oth-order Butterworth
_ : mth_octave_analyzer6e(M,ftop,N) : par(i,N,_); // 6th-order elliptic

Also for convenience:

_ : mth_octave_analyzer3(M,ftop,N) : par(i,N,_); // 3d-order Butterworth
_ : mth_octave_analyzer5(M,ftop,N) : par(i,N,_); // 5Sth-roder Butterworth
mth_octave_analyzer_default = mth_octave_analyzer6e;

Where:

e 0: order of filter used to split each frequency band into two
e M: number of band-slices per octave

o ftop: highest band-split crossover frequency (e.g., 20 kHz)
¢ N: total number of bands (including dc and Nyquist)

Mth-Octave Spectral Level

Spectral Level: Display (in bar graphs) the average signal level in each spectral
band.

(an.)mth_octave_spectral_level6e

Spectral level display.
Usage:
_ : mth_octave_spectral_level6e(M,ftop,NBands,tau,dB_offset) : _;

Where:

e M: bands per octave

e ftop: lower edge frequency of top band

e NBands: number of passbands (including highpass and dc bands),
o tau: spectral display averaging-time (time constant) in seconds,
e dB_offset: constant dB offset in all band level meters.

39

Also for convenience:

mth_octave_spectral_level_default = mth_octave_spectral_level6e;
spectral_level = mth_octave_spectral_level(2,10000,20);

(an.) [third|half] _octave_[analyzer|filterbank]

A bunch of special cases based on the different analyzer functions described
above:

third_octave_analyzer(N) = mth_octave_analyzer_default(3,10000,N);
third_octave_filterbank(N) = mth_octave_filterbank_default(3,10000,N);
half_octave_analyzer(N) = mth_octave_analyzer_default(2,10000,N);
half_octave_filterbank(N) = mth_octave_filterbank_default(2,10000,N);
octave_filterbank(N) = mth_octave_filterbank_default(1,10000,N);
octave_analyzer(N) = mth_octave_analyzer_default(1,10000,N);

Usage

See mth_octave_spectral_level_demo in demos.lib.

Arbritary-Crossover Filter-Banks and Spectrum Analyzers

These are similar to the Mth-octave analyzers above, except that the band-split
frequencies are passed explicitly as arguments.

(an.)analyzer

Analyzer.

Usage

_ : analyzer(0,freqgs) : par(i,N,_); // No delay equalizer
Where:

 0: band-split filter order (ODD integer required for filterbank([i])

40

o fregs: (fcl,fc2,...,fcNs) [in numerically ascending order], where Ns=N-1
is the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ : analyzer(3,(fcl,fc2)) : _,_,_

Fast Fourier Transform (fft) and its Inverse (ifft)

Sliding FFTs that compute a rectangularly windowed FFT each sample.

(an.)gortzelOpt

Optimized Goertzel filter.
Usage

_ : goertzelOpt(freq,N) : _;
Where:

e freq: frequency to be analyzed
o N: the Goertzel block size

Reference

o https://en.wikipedia.org/wiki/Goertzel _algorithm

(an.)gortzelComp

Complex Goertzel filter.

41

https://en.wikipedia.org/wiki/Goertzel_algorithm

Usage
_ @ goertzelComp(freq,N) : _;
Where:

e freq: frequency to be analyzed
o N: the Goertzel block size

Reference

« https://en.wikipedia.org/wiki/Goertzel _algorithm

(an.)goertzel

Same as goertzelOpt.
Usage

_ @ goertzel(freq,N) : _;
Where:

e freq: frequency to be analyzed
e N: the Goertzel block size

Reference

o https://en.wikipedia.org/wiki/Goertzel _algorithm

(an.)fft

Fast Fourier Transform (FFT)

42

https://en.wikipedia.org/wiki/Goertzel_algorithm
https://en.wikipedia.org/wiki/Goertzel_algorithm

Usage
si.cbus(N) : fft(N) : si.cbus(N);
Where:

e si.cbus(N) is a bus of N complex signals, each specified by real and
imaginary parts: (r0,i0), (r1,il), (r2,i2), ...

e Nis the FFT size (must be a power of 2: 24,8 16,...)

o fft(N) performs a length N FFT for complex signals (radix 2)

e The output is a bank of N complex signals containing the complex spec-
trum over time: (RO, 10), (R1,I1), ...

— The dc component is (R0,10), where I0=0 for real input signals.
FFTs of Real Signals:
e To perform a sliding FFT over a real input signal, you can say
process = signal : an.rtocv(N) : an.fft(N);

where an.rtocv converts a real (scalar) signal to a complex vector signal having
a zero imaginary part.

e See an.rfft_analyzer_c (in analyzers.lib) and related functions for
more detailed usage examples.

e Use an.rfft_spectral_level(N,tau,dB_offset) to display the power
spectrum of a real signal.

e See dm.fft_spectral_level_demo(N) in demos.1lib for an example GUI
driving an.rfft_spectral_level().

Reference

o Decimation-in-time (DIT) Radix-2 FFT

(an.)ifft

Inverse Fast Fourier Transform (IFFT).

43

https://cnx.org/contents/zmcmahhR@7/Decimation-in-time-DIT-Radix-2

Usage
si.cbus(N) : ifft(N) : si.cbus(N);
Where:

o N is the IFFT size (power of 2)

e Input is a complex spectrum represented as interleaved real and imaginary
parts: (RO, 10), (R1,I1), (R2,12), ...

e Output is a bank of N complex signals giving the complex signal in the
time domain: (r0, i0), (r1,il), (r2,i2), ...

basics.lib

A library of basic elements. Its official prefix is ba.

Conversion Tools
(ba.)samp2sec

Converts a number of samples to a duration in seconds. samp2sec is a standard
Faust function.

Usage
samp2sec(n)
Where:

e n: number of samples

(ba.)sec2samp

Converts a duration in seconds to a number of samples. samp2sec is a standard
Faust function.

44

Usage
sec2samp(d) : _

Where:

e d: duration in seconds

(ba.)db2linear

Converts a loudness in dB to a linear gain (0-1). db2linear is a standard Faust

function.

Usage
db2linear (1) _

Where:

e 1: loudness in dB

(ba.)linear2db

Converts a linear gain (0-1) to a loudness in dB. linear2db is a standard Faust

function.

Usage
linear2db(g)
Where:

e g: a linear gain

45

(ba.)lin2LogGain

Converts a linear gain (0-1) to a log gain (0-1).

Usage

1in2LogGain(n)

(ba.)log2LinGain

Converts a log gain (0-1) to a linear gain (0-1).

Usage

log2LinGain(n)

(ba.)tau2pole

Returns a real pole giving exponential decay. Note that t60 (time to decay 60
dB) is ~6.91 time constants. tau2pole is a standard Faust function.

Usage
_ : smooth(tau2pole(tau))
Where:

e tau: time-constant in seconds

(ba.)pole2tau

Returns the time-constant, in seconds, corresponding to the given real, positive
pole in (0,1). pole2tau is a standard Faust function.

46

Usage
pole2tau(pole)
Where:

e pole: the pole

(ba.)midikey2hz

Converts a MIDI key number to a frequency in Hz (MIDI key 69 = A440).
midikey2hz is a standard Faust function.

Usage
midikey2hz (mk)
Where:

e mk: the MIDI key number

(ba.)hz2midikey

Converts a frequency in Hz to a MIDI key number (MIDI key 69 = A440).
hz2midikey is a standard Faust function.

Usage
hz2midikey (£)
Where:

e f: frequency in Hz

47

(ba.)semi2ratio

Converts semitones in a frequency multiplicative ratio. semi2ratio is a stan-
dard Faust function.

Usage
semi2ratio(semi)
Where:

e semi: number of semitone

(ba.)ratio2semi

Converts a frequency multiplicative ratio in semitones. ratio2semi is a stan-
dard Faust function.

Usage
ratio2semi(ratio)

Where:

e ratio: frequency multiplicative ratio

(ba.)pianokey2hz

Converts a piano key number to a frequency in Hz (piano key 49 = A440).

Usage
pianokey2hz(pk)
Where:

o pk: the piano key number

48

(ba.)hz2pianokey

Converts a frequency in Hz to a piano key number (piano key 49 = A440).
Usage

hz2pianokey (£)

Where:

e f: frequency in Hz

Counters and Time/Tempo Tools
(ba.)countdown

Starts counting down from n included to 0. While trig is 1 the output is n.
The countdown starts with the transition of trig from 1 to 0. At the end of the
countdown the output value will remain at 0 until the next trig. countdown is
a standard Faust function.

Usage
countdown(n,trig)
Where:

e n: the starting point of the countdown
o trig: the trigger signal (1: start at n; 0: decrease until 0)

(ba.)countup

Starts counting up from 0 to n included. While trig is 1 the output is 0. The
countup starts with the transition of trig from 1 to 0. At the end of the countup
the output value will remain at n until the next trig. countup is a standard
Faust function.

49

Usage
countup(n,trig)
Where:

e n: the maximum count value
o trig: the trigger signal (1: start at 0; 0: increase until n)

(ba.)sweep

Counts from 0 to period-1 repeatedly, generating a sawtooth waveform, like
os.If rawsaw, starting at 1 when run transitions from 0 to 1. Outputs zero
while run is 0.

Usage

sweep (period,run)

(ba.)time

A simple timer that counts every samples from the beginning of the process.
time is a standard Faust function.

Usage

time : _

(ba.)ramp

An linear ramp of ‘n’ samples to reach the next value

50

Usage
_ @ ramp(n)

Where:

e n: number of samples to reach the next value

(ba.)tempo

Converts a tempo in BPM into a number of samples.
Usage

tempo (t)

Where:

e t: tempo in BPM

(ba.)period

Basic sawtooth wave of period p.
Usage

period(p)

Where:

o p: period as a number of samples

o1

(ba.)pulse

Pulses (10000) generated at period p.

Usage
pulse(p)
Where:

e p: period as a number of samples

(ba.)pulsen

Pulses (11110000) of length n generated at period p.

Usage
pulsen(n,p) : _

Where:

e n: pulse length as a number of samples
e p: period as a number of samples

(ba.)cycle

Split nonzero input values into n cycles.

Usage
_ : cycle(n) <:
Where:

e n: the number of cycles/output signals

92

(ba.)beat

Pulses at tempo t. beat is a standard Faust function.

Usage
beat (t)
Where:

e t: tempo in BPM

(ba.)pulse_countup

Starts counting up pulses. While trig is 1 the output is counting up, while trig
is 0 the counter is reset to 0.

Usage
_ : pulse_countup(trig)
Where:

e trig: the trigger signal (1: start at next pulse; 0: reset to 0)

(ba.)pulse_countdown

Starts counting down pulses. While trig is 1 the output is counting down, while
trig is 0 the counter is reset to 0.

Usage
_ : pulse_countdown(trig)
Where:

e trig: the trigger signal (1: start at next pulse; 0: reset to 0)

]

(ba.)pulse_countup_loop

Starts counting up pulses from 0 to n included. While trig is 1 the output is
counting up, while trig is 0 the counter is reset to 0. At the end of the countup

(n) the output value will be reset to 0.

Usage
_ : pulse_countup_loop(n,trig)
Where:

e n: the highest number of the countup (included) before reset to 0.
o trig: the trigger signal (1: start at next pulse; 0: reset to 0)

(ba.)resetCtr

Function that lets through the mth impulse out of each consecutive group of n

impulses.

Usage
_ : resetCtr(n,m)
Where:

e n: the total number of impulses being split
e m: index of impulse to allow to be output

(ba.)pulse_countdown_loop

Starts counting down pulses from 0 to n included. While trig is 1 the output
is counting down, while trig is 0 the counter is reset to 0. At the end of the
countdown (n) the output value will be reset to 0.

o4

Usage
_ @ pulse_countdown_loop(n,trig)
Where:

e n: the highest number of the countup (included) before reset to 0.
e trig: the trigger signal (1: start at next pulse; 0: reset to 0)

Array Processing/Pattern Matching
(ba.)count

Count the number of elements of list 1. count is a standard Faust function.

Usage

count (1)
count ((10,20,30,40)) -> 4

Where:

o 1: list of elements

(ba.)take

Take an element from a list. take is a standard Faust function.

Usage

take(P,1)
take(3,(10,20,30,40)) -> 30

Where:

o P: position (int, known at compile time, P > 0)
e 1: list of elements

99

(ba.)subseq

Extract a part of a list.

Usage

subseq(1l, p, n)
subseq((10,20,30,40,50,60), 1, 3) -> (20,30,40)
subseq((10,20,30,40,50,60), 4, 1) -> 50

Where:

o 1: list
e p: start point (0: begin of list)
o n: number of elements

Note:

Faust doesn’t have proper lists. Lists are simulated with parallel compositions
and there is no empty list.

Selectors (Conditions)

(ba.)if

if-then-else implemented with a select2. WARNING : since select2 is strict
(always evaluating both branches), the resulting if does not have the usual

“lazy” semantic of the C if form, and thus cannot be used to protect against
forbidden computations like division-by-zero for instance.

Usage

e if(cond, then, else)
Where:

e cond: condition

e cond: signal selected while c is true
e else: signal selected while c is false

96

(ba.)selector

Selects the ith input among n at compile time.

Usage

selector(I,N)

_s_s_s_ : selector(2,4) : _ // selects the 3rd input among 4
Where:

o I:input to select (int, numbered from 0, known at compile time)
e N: number of inputs (int, known at compile time, N > T)

There is also cselector for selecting among complex input signals of the form
(real,imag).

(ba.)select2stereo

Select between 2 stereo signals.

Usage

_s_s_s_ : select2stereo(bpc) : _,_
Where:

 bpc: the selector switch (0/1)

(ba.)selectn

Selects the ith input among N at run time.

o7

Usage

selectn(N,i)
_s_s_s_ : selectn(4,2) : _ // selects the 3rd input among 4
Where:

e N: number of inputs (int, known at compile time, N > 0)
o i: input to select (int, numbered from 0)

Example test program

N = 64;
process = par(n, N, (par(i,N,i) : selectn(N,n)));

(ba.)selectmulti

Selects the ith circuit among N at run time (all should have the same number
of inputs and outputs) with a crossfade.

Usage
selectmulti(n,lgen,id)
Where:

e n: crossfade in samples
e lgen: list of circuits
e id: circuit to select (int, numbered from 0)

Example test program

process = selectmulti(ma.SR/10, ((3,9),(2,8),(5,7)), nentry("choice", 0, 0, 2, 1));
process = selectmulti(ma.SR/10, ((_*3,_%9),(_*2,_x8),(_*5,_%7)), nentry("choice", 0, 0, 2,

98

Other
(ba.)latch

Latch input on positive-going transition of “clock” (“sample-and-hold”).

Usage
_ : latch(clocksig)
Where:

e clocksig: hold trigger (0 for hold, 1 for bypass)

(ba.)sAndH

Sample And Hold. sAndH is a standard Faust function.

Usage
_ : sAndH(%)
Where:

e t: hold trigger (0 for hold, 1 for bypass)

(ba.)downSample

Down sample a signal. WARNING: this function doesn’t change the rate of a
signal, it just holds samples... downSample is a standard Faust function.

Usage
_ : downSample(freq)
Where:

o freq: new rate in Hz

99

(ba.)peakhold

Outputs current max value above zero.

Usage
_ : peakhold(mode) : _;

Where:

mode means: 0 - Pass through. A single sample 0 trigger will work as a reset. 1

- Track and hold max value.

(ba.)peakholder

Tracks abs peak and holds peak for ‘n’ samples.

Usage
_ : peakholder(n) : _;
Where:

e n: number of samples

(ba.)impulsify

Turns the signal from a button into an impulse (1,0,0,...
on). impulsify is a standard Faust function.

Usage

button("gate") : impulsify;

60

when button turns

(ba.)automat

Record and replay to the values the input signal in a loop.

Usage

hslider(...) : automat(bps, size, init)

(ba.)bpf

bpf is an environment (a group of related definitions) that can be used to create
break-point functions. It contains three functions:

e start(x,y) to start a break-point function
e end(x,y) to end a break-point function
e point(x,y) to add intermediate points to a break-point function

A minimal break-point function must contain at least a start and an end point:
f = bpf.start(x0,y0) : bpf.end(xl,yl);

A more involved break-point function can contains any number of intermediate
points:

f = bpf.start(x0,y0) : bpf.point(xl,yl) : bpf.point(x2,y2) : bpf.end(x3,y3);

In any case the x_{i} must be in increasing order (for all i, x_{i} < x_{i+1}).
For example the following definition :

f = bpf.start(x0,y0) : ... : bpf.point(xi,yi) : ... : bpf.end(xn,yn);

implements a break-point function f such that:

e f(x) = y_{0} when x < x_{0}
e £(x) = y_{n} when x > x_{n}
o £(x) =y {i} + (y_{i+1}-y_{iPD*(x-x_{i})/(x_{i+1}-x_{i}) when

x_{i} <= xand x < x_{i+1}

bpf is a standard Faust function.

61

(ba.)listInterp

Linearly interpolates between the elements of a list.

Usage

index = 1.69; // range is 0-4
process = listInterp((800,400,350,450,325),index);

Where:

o index: the index (float) to interpolate between the different values. The
range of index depends on the size of the list.

(ba.)bypass1

Takes a mono input signal, route it to e and bypass it if bpc = 1. bypass1 is
a standard Faust function.

Usage
_ : bypass1(bpc,e)
Where:

e bpc: bypass switch (0/1)
e e: a mono effect

(ba.)bypass2

Takes a stereo input signal, route it to e and bypass it if bpc = 1. bypass2 is
a standard Faust function.

62

Usage
, : bypass2(bpc,e) : _,_
Where:

 bpc: bypass switch (0/1)
e e: a stereo effect

(ba.)bypassito2

Bypass switch for effect e having mono input signal and stereo output. Effect
e is bypassed if bpc = 1. bypassito2 is a standard Faust function.

Usage
_ : bypassil(bpc,e) : _,_
Where:

 bpc: bypass switch (0/1)
e e: a mono-to-stereo effect

(ba.)bypass_fade

Bypass an arbitrary (N x N) circuit with ‘n’ samples crossfade. Once bypassed
the
effect is replaced by par(i,N,_). Bypassed circuits can be chained.

Usage

_ : bypass_fade(n,b,e)
or
, : bypass_fade(n,b,e) : _,_

e n: number of samples for the crossfade
e b: bypass switch (0/1)

e e: N x N circuit

63

Examples

process = bypass_fade(ma.SR/10, checkbox("bypass echo"), echo);
process = bypass_fade(ma.SR/10, checkbox("bypass reverb"), freeverb);

(ba.)toggle

Triggered by the change of 0 to 1, it toggles the output value between 0 and 1.

Usage

_ . toggle : _

Examples

button("toggle") : toggle : vbargraph("output", 0, 1)
(an.amp_follower(0.1) > 0.01) : toggle : vbargraph("output", 0, 1) // takes audio input

(ba.)on_and_off

The first channel set the output to 1, the second channel to 0.

Usage

_, _ : on_and_off

Example

button("on"), button("off") : on_and_off : vbargraph("output", 0, 1)

(ba.)selectoutn

Route input to the output among N at run time.

64

Usage
_ : selectoutn(N, i) : _,_,...N
Where:

o N: number of outputs (int, known at compile time, N > 0)
e i: output number to route to (int, numbered from 0) (i.e. slider)

Example

process = 1 : selectoutn(3, sel) : par(i, 3, vbargraph("v.bargraph %i", 0, 1));

sel = hslider("volume", 0, O, 2, 1) : int;

Sliding Reduce

Provides various operations on the last N samples using a high order ‘slidingRe-
duce(op,N,maxN,disabledVal,x)* fold-like function:

e slidingSumN(n,maxn): the sliding sum of the last n input samples

e slidingMaxN(n,maxn): the sliding max of the last n input samples

e slidingMinN(n,maxn): the sliding min of the last n input samples

e slidingMeanN(n,maxn): the sliding mean of the last n input samples
e slidingRMSn(n,maxn): the sliding RMS of the last n input samples

Working Principle

If we want the maximum of the last 8 values, we can do that as:

simpleMax(x) =
(
(
max (x@0,x01),
max (x02,x@3)
) :max

max (x0@4,x@5) ,
max (x06,x0Q7)
) :max
)

:max;

65

max (x02,x@3) is the same as max (x@0,x@1)@2 but the latter re-uses a value we
already computed,so is more efficient. Using the same trick for values 4 trough
7, we can write:

efficientMax(x)=

(

max (x@0,x0@1),
max (x@0,x01)@2
) :max

max (x@0,x01),
max (x@0,x01)@2
) :max@4
)

:max;

We can rewrite it recursively, so it becomes possible to get the maximum at
have any number of values, as long as it’s a power of 2.

recursiveMax =
case {
(1,x) => x;

(N,x) => max(recursiveMax(N/2,x) , recursiveMax(N/2,x)@(N/2));

s

What if we want to look at a number of values that’s not a power of 27 For each
value, we will have to decide whether to use it or not. If N is bigger than the
index of the value, we use it, otherwise we replace it with (0-(ma.INFINITY)):

variableMax(N,x) =
max (
max (
(
(x@0 : useVal(0)),
(x01 : useVal(1))
) :max,
(
(x@2 : useVal(2)),
(x@3 : useVal(3))
) :max

),

66

max (
(
(x@4 : useVal(4)),
(x@5 : useVal(5))
) :max,
(
(x06 : useVal(6)),
(x@7 : useVal(7))
) :max

)

with {

useVal(i) = select2((N>=i) , (0-(ma.INFINITY)),);
};

Now it becomes impossible to re-use any values. To fix that let’s first look at
how we’d implement it using recursiveMax, but with a fixed N that is not a
power of 2. For example, this is how you’d do it with N=3:

binaryMaxThree(x) =

(
recursiveMax(1,x)@0, // the first x
recursiveMax(2,x)@1 // the second and third x
) :max;
N=6
binaryMaxSix(x) =
(
recursiveMax(2,x)@0, // first two
recursiveMax(4,x)@2 // third trough sixth
) :max;

Note that recursiveMax(2,x) is used at a different delay then in
binaryMaxThree, since it represents 1 and 2, not 2 and 3. Each block is
delayed the combined size of the previous blocks.

N=7
binaryMaxSeven(x) =
(
(
recursiveMax(1,x)@0, // first x
recursiveMax(2,x)@1 // second and third
) :max,

67

(
recursiveMax(4,x)@3 // fourth trough seventh
)

) :max;

To make a variable version, we need to know which powers of two are used, and
at which delay time.

Then it becomes a matter of:

e lining up all the different block sizes in parallel: the first par () statement
e delaying each the appropriate amount: sumOfPrevBlockSizes()

e turning it on or off: usevVal()

getting the maximum of all of them: combine ()

In Faust, we can only do that for a fixed maximum number of values: maxN

variableBinaryMaxN(N,maxN,x) =
par (i,maxNrBits,recursiveMax (pow2(i),x)@sumOfPrevBlockSizes(N,maxN,i) : useVal(i))
// The sum of all the sizes of the previous blocks
sumOfPrevBlockSizes (N,maxN,0) = O;
sumOfPrevBlockSizes (N,maxN,i) (subseq((allBlockSizes(N,maxN)),0,i):>_);
allBlockSizes(N,maxN) = par(i, maxNrBits, pow2(i) * isUsed(i));
maxNrBits = int2nr0fBits(maxN) ;
// get the maximum of all blocks
combine(2) = max;
combine(N) = max(combine(N-1),);
// Decide wether or not to use a certain value, based on N
useVal(i) select2(isUsed(i), (0-(ma.INFINITY)),);
isUsed (i) take(i+1, (int2bin(N,maxN)));

};

(ba.)slidingReduce

Fold-like high order function. Apply a commutative binary operation
<op> to the last <n> consecutive samples of a signal <x>. For example :
slidingReduce (max,128,128,-(ma.INFINITY)) will compute the maximum

of the last 128 samples. The output is updated each sample, unlike reduce,
where the output is constant for the duration of a block.

Usage

_ : slidingReduce(op,N,maxN,disabledVal)

68

: comb:

Where:

e N: the number of values to process

e maxN: the maximum number of values to process, needs to be a power of 2
e op: the operator. Needs to be a commutative one.

e disabledVal: the value to use when we want to ignore a value.

In other words, op(x,disabledVal) should equal to x. For example, +(x,0)
equals x and min(x,ma.INFINITY) equals x. So if we want to calculate the sum,
we need to give 0 as disabledVal, and if we want the minimum, we need to
give ma.INFINITY as disabledVal.

(ba.)slidingSumN

The sliding sum of the last n input samples.

Usage
_ @ slidingSumN(N,maxN)
Where:

e N: the number of values to process
e maxN: the maximum number of values to process, needs to be a power of 2

(ba.)slidingMaxN

The sliding maximum of the last n input samples.

Usage
_ ¢ slidingMaxN(N,maxN)
Where:

e N: the number of values to process
e maxN: the maximum number of values to process, needs to be a power of 2

69

(ba.)slidingSumN

The sliding minimum of the last n input samples.

Usage
_ ¢ slidingMinN(N,maxN)
Where:

e N: the number of values to process
e maxN: the maximum number of values to process, needs to be a power of 2

(ba.)slidingMeanN

The sliding mean of the last n input samples.

Usage
_ ¢ slidingMeanN(N,maxN)
Where:

e N: the number of values to process
e maxN: the maximum number of values to process, needs to be a power of 2

(ba.)slidingRMSn

The root mean square of the last n input samples.

Usage
_ ¢ slidingRMSn(N,maxN)
Where:

e N: the number of values to process
e maxN: the maximum number of values to process, needs to be a power of 2

70

compressors.lib

A library of compressor effects. Its official prefix is co.

Functions Reference
(co.)compressor_mono

Mono dynamic range compressors. compressor_mono is a standard Faust func-
tion.

Usage
compressor_mono (ratio,thresh,att,rel)
Where:

e ratio: compression ratio (1 = no compression, >1 means compression)

o thresh: dB level threshold above which compression kicks in (0 dB =
max level)

o att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

References

« http://en.wikipedia.org/wiki/Dynamic_ range compression

o https://ccrma.stanford.edu/~jos/filters/Nonlinear Filter_ Example
Dynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor__.dsp

o More features: https://github.com/magnetophon/faustCompressors

(co.)compressor_stereo

Stereo dynamic range compressors.

71

http://en.wikipedia.org/wiki/Dynamic_range_compression
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://github.com/magnetophon/faustCompressors

Usage

: compressor_stereo(ratio,thresh,att,rel) : _,

Where:

e ratio: compression ratio (1 = no compression, >1 means compression)

o thresh: dB level threshold above which compression kicks in (0 dB =
max level)

e att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

References

o http://en.wikipedia.org/wiki/Dynamic range compression

o https://ccrma.stanford.edu/~jos/filters/Nonlinear_ FilterExample__
Dynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor_ .dsp

o More features: https://github.com/magnetophon/faustCompressors

(co.)limiter_1176_R4_mono

A limiter guards against hard-clipping. It can be implemented as a compressor
having a high threshold (near the clipping level), fast attack and release, and
high ratio. Since the ratio is so high, some knee smoothing is desirable (“soft
limiting”). This example is intended to get you started using compressor_* as
a limiter, so all parameters are hardwired to nominal values here. Ratios: 4
(moderate compression), 8 (severe compression), 12 (mild limiting), or 20 to 1
(hard limiting) Att: 20-800 MICROseconds (Note: scaled by ratio in the 1176)
Rel: 50-1100 ms (Note: scaled by ratio in the 1176) Mike Shipley likes 4:1
(Grammy-winning mixer for Queen, Tom Petty, etc.) Faster attack gives “more
bite” (e.g. on vocals) He hears a bright, clear eq effect as well (not implemented
here). limiter_1176_R4_mono is a standard Faust function.

Usage

_ ¢ limiter_1176_R4_mono : _;

72

http://en.wikipedia.org/wiki/Dynamic_range_compression
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://github.com/magnetophon/faustCompressors

Reference:

http://en.wikipedia.org/wiki/1176_ Peak Limiter

(co.)limiter_1176_R4_stereo

A limiter guards against hard-clipping. It can be implemented as a compressor
having a high threshold (near the clipping level), fast attack and release, and
high ratio. Since the ratio is so high, some knee smoothing is desirable (“soft
limiting”). This example is intended to get you started using compressor_* as
a limiter, so all parameters are hardwired to nominal values here. Ratios: 4
(moderate compression), 8 (severe compression), 12 (mild limiting), or 20 to 1
(hard limiting) Att: 20-800 MICROseconds (Note: scaled by ratio in the 1176)
Rel: 50-1100 ms (Note: scaled by ratio in the 1176) Mike Shipley likes 4:1
(Grammy-winning mixer for Queen, Tom Petty, etc.) Faster attack gives “more
bite” (e.g. on vocals) He hears a bright, clear eq effect as well (not implemented
here)

Usage

: limiter_1176_R4_stereo : _,_;

- -

Reference:

http://en.wikipedia.org/wiki/1176_ Peak_ Limiter

delays.lib

This library contains a collection of delay functions. Its official prefix is de.

Basic Delay Functions
(de.)delay

Simple d samples delay where n is the maximum delay length as a number
of samples. Unlike the @ delay operator, here the delay signal d is explicitly
bounded to the interval [0..n]. The consequence is that delay will compile even
if the interval of d can’t be computed by the compiler. delay is a standard
Faust function.

73

http://en.wikipedia.org/wiki/1176_Peak_Limiter
http://en.wikipedia.org/wiki/1176_Peak_Limiter

Usage
_ : delay(n,d)
Where:

e n: the max delay length (in samples)
e d: the delay length as a number of samples (integer)

(de.)fdelay

Simple d samples fractional delay based on 2 interpolated delay lines where n is
the maximum delay length as a number of samples.

(de.)sdelay

s(mooth)delay: a mono delay that doesn’t click and doesn’t transpose when the
delay time is changed.

Usage
_ @ sdelay(N,it,dt)
Where :

e N: maximal delay in samples
e it: interpolation time (in samples) for example 1024
o dt: delay time (in samples)

Lagrange Interpolation
(de.)fdelaylti and (de.)fdelayltv

Fractional delay line using Lagrange interpolation.

74

Usage
_ : fdelaylt[i|v] (order, maxdelay, delay, inputsignal)

Where order=1,2,3, ... is the order of the Lagrange interpolation polynomial.

fdelaylti is most efficient, but designed for constant/slowly-varying delay.
fdelayltv is more expensive and more robust when the delay varies rapidly.

NOTE: The requested delay should not be less than (N-1)/2.

References

e https://ccrma.stanford.edu/~jos/pasp/Lagrange Interpolation.html

— (fixed-delay case)(https://ccrma.stanford.edu/~jos/Interpolation/Efficient_ Time_ Invariant_ Lagra
— (variable-delay case)(https://ccrma.stanford.edu/~jos/Interpolation/Time_Varying Lagrange Int

e Timo I. Laakso et al., “Splitting the Unit Delay - Tools for Fractional
Delay Filter Design”, IEEE Signal Processing Magazine, vol. 13, no. 1,
pp- 30-60, Jan 1996.

¢ Philippe Depalle and Stephan Tassart, “Fractional Delay Lines using La-
grange Interpolators”, ICMC Proceedings, pp. 341-343, 1996.

(de.)fdelay[n]

For convenience, fdelayl, fdelay2, fdelay3, fdelay4, fdelay5 are also avail-
able where n is the order of the interpolation.

Thiran Allpass Interpolation

Thiran Allpass Interpolation

Reference

https://ccrma.stanford.edu/~jos/pasp/Thiran__ Allpass_ Interpolators.html

(de.)fdelay[n]a

Delay lines interpolated using Thiran allpass interpolation.

7

https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html
https://ccrma.stanford.edu/~jos/pasp/Thiran_Allpass_Interpolators.html

Usage
_ @ fdelay[N]a(maxdelay, delay, inputsignal)

(exactly like fdelay)
Where:

e N=1,2,3, or 4 is the order of the Thiran interpolation filter, and the delay
argument is at least N - 1/2.

Note

The interpolated delay should not be less than N - 1/2. (The allpass delay
ranges from N - 1/2 to N + 1/2.) This constraint can be alleviated by altering
the code, but be aware that allpass filters approach zero delay by means of
pole-zero cancellations. The delay range [N-1/2,N+1/2] is not optimal. What
is?

Delay arguments too small will produce an UNSTABLE allpass!

Because allpass interpolation is recursive, it is not as robust as Lagrange inter-
polation under time-varying conditions. (You may hear clicks when changing
the delay rapidly.)

First-order allpass interpolation, delay d in [0.5,1.5]

demos.lib

This library contains a set of demo functions based on examples located in the
/examples folder. Its official prefix is dm.

Analyzers
(dm.)mth_octave_spectral_level_demo

Demonstrate mth_octave_spectral level in a standalone GUI.

Usage

_ : mth_octave_spectral_level_demo(BandsPerOctave);
_ : spectral_level_demo : _; // 2/3 octave

76

Filters
(dm.) parametric_eq_demo

A parametric equalizer application.

Usage:

_ ! parametric_eq_demo : _ ;

(dm.)spectral_tilt_demo

A spectral tilt application.

Usage
_ : spectral_tilt_demo(N) : _ ;
Where:

o N: filter order (integer)

All other parameters interactive

(dm.)mth_octave_filterbank_demo and (dm.)filterbank_demo

Graphic Equalizer: Each filter-bank output signal routes through a fader.

Usage

_ : mth_octave_filterbank_demo (M)
_ : filterbank_demo : _

Where:

e N: number of bands per octave

7

Effects
(dm.)cubicnl_demo

Distortion demo application.

Usage:

cubicnl_demo : _;

(dm.)gate_demo

Gate demo application.

Usage

, : gate_demo : _,

(dm.) compressor_demo

Compressor demo application.

Usage

, : compressor_demo : _,_;

(dm.)moog_vcf_demo

Illustrate and compare all three Moog VCF implementations above.

Usage

_ : moog_vcf_demo : _;

8

(dm.)wah4_demo

Wah pedal application.

Usage

_ : wah4 _demo : _;

(dm.) crybaby_demo

Crybaby effect application.

Usage

crybaby_demo : _ ;

(dm.)flanger_demo

Flanger effect application.

Usage

, : flanger_demo : _,_;

(dm.)phaser2_demo

Phaser effect demo application.

Usage

, : phaser2_demo : _,_;

(dm.) freeverb_demo

Freeverb demo application.

Usage

, : freeverb_demo : _,_;

(dm.)stereo_reverb_tester

Handy test inputs for reverberator demos below.

Usage

_ : stereo_reverb_tester : _

(dm.) fdnrevO_demo

A reverb application using fdnrevO.

Usage
, : fdnrev0O_demo (N,NB,BBS0)
Where:

e n: Feedback Delay Network (FDN) order / number of delay lines used =
order of feedback matrix / 2, 4, 8, or 16 [extend primes array below for
32, 64, ...]

e nb: Number of frequency bands / Number of (nearly) independent T60
controls / Integer 3 or greater

e bbso = Butterworth band-split order / order of lowpass/highpass band-
split used at each crossover freq / odd positive integer

80

(dm.)zita_rev_£fdn_demo

Reverb demo application based on zita_rev_fdn.

Usage

si.bus(8) : zita_rev_fdn_demo : si.bus(8)

(dm.)zita_light

Light version of dm.zita_revl with only 2 Ul elements.

Usage

, : zita_light : _,_

(dm.)zita_revi

Example GUI for zita_revl_stereo (mostly following the Linux zita-revi
GUI).

Only the dry/wet and output level parameters are “dezippered” here. If param-
eters are to be varied in real time, use smooth(0.999) or the like in the same
way.

Usage

, : zita_revl : _,_

Reference

http://www.kokkinizita.net/linuxaudio/zita-revl-doc/quickguide.html

81

http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html

(zenerators
(dm.)sawtooth_demo

An application demonstrating the different sawtooth oscillators of Faust.

Usage

sawtooth_demo

(dm.)virtual_analog_oscillator_demo

Virtual analog oscillator demo application.

Usage

virtual_analog_oscillator_demo :

(dm.) oscrs_demo

Simple application demoing filter based oscillators.

Usage

oscrs_demo : _

(dm.)velvet_noise_demo

Listen to velvet_noise!

Usage

velvet_noise_demo

82

(dm.)latch_demo

Illustrate latch operation

Usage

echo ’import("stdfaust.lib");’ > latch_demo.dsp
echo ’process = dm.latch_demo;’ >> latch_demo.dsp
faust2octave latch_demo.dsp

Octave:1> plot(faustout);

(dm.) envelopes_demo

Tllustrate various envelopes overlaid, including their gate * 1.1.

Usage

echo ’import("stdfaust.lib");’ > envelopes_demo.dsp

echo ’process = dm.envelopes_demo;’ >> envelopes_demo.dsp
faust2octave envelopes_demo.dsp

Octave:1> plot(faustout);

(dm.)fft_spectral_level_demo

Make a real-time spectrum analyzer using FFT from analyzers.lib

Usage

echo ’import("stdfaust.lib");’ > fft_spectral_level_demo.dsp
echo ’process = dm.fft_spectral_level_demo;’ >> fft_spectral_level_demo.dsp
Mac:
faust2caqt fft_spectral_level_demo.dsp
open fft_spectral_level_demo.app
Linux GTK:
faust2jack fft_spectral_level_demo.dsp
./fft_spectral_level_demo
Linux QT:
faust2jaqt fft_spectral_level_demo.dsp
./fft_spectral_level_demo

83

(dm.)reverse_echo_demo (nChans)

Multichannel echo effect with reverse delays

Usage

echo ’import("stdfaust.lib");’ > reverse_echo_demo.dsp
echo ’nChans = 3; // Any integer > 1 should work here’ >> reverse_echo_demo.dsp
echo ’process = dm.reverse_echo_demo(nChans);’ >> reverse_echo_demo.dsp
Mac:
faust2caqt reverse_echo_demo.dsp
open reverse_echo_demo.app
Linux GTK:
faust2jack reverse_echo_demo.dsp
./reverse_echo_demo
Linux QT:
faust2jaqt reverse_echo_demo.dsp
./reverse_echo_demo
Etc.

(dm.)pospass_demo

Use Positive-Pass Filter pospass() to frequency-shift a sine tone. First, a real
sinusoid is converted to its analytic-signal form using pospass() to filter out its
negative frequency component. Next, it is multiplied by a modulating complex
sinusoid at the shifting frequency to create the frequency-shifted result. The
real and imaginary parts are output to channels 1 & 2. For a more interesting
frequency-shifting example, check the “Use Mic” checkbox to replace the input
sinusoid by mic input. Note that frequency shifting is not the same as frequency
scaling. A frequency-shifted harmonic signal is usually not harmonic. Very small
frequency shifts give interesting chirp effects when there is feedback around the
frequency shifter.

Usage

echo ’import("stdfaust.lib");’ > pospass_demo.dsp
echo ’process = dm.pospass_demo;’ >> pospass_demo.dsp
Mac:

84

faust2caqt pospass_demo.dsp
open pospass_demo.app

Linux GTK:
faust2jack pospass_demo.dsp
./pospass_demo

Linux QT:
faust2jaqt pospass_demo.dsp
./pospass_demo

Etc.

(dm.)exciter

Psychoacoustic harmonic exciter, with GUI.

Usage

_ ! exciter : _

References

o https://secure.aes.org/forum/pubs/ebriefs/?elib=16939
o https://www.researchgate.net/publication/258333577_Modeling the
Harmonic_Exciter

(dm.)vocoder_demo

Use example of the vocoder function where an impulse train is used as excitation.

Usage

_ : vocoder_demo : _;

dx7.1lib

Yamaha DX7 emulation library. Its official prefix is dx.

85

https://secure.aes.org/forum/pubs/ebriefs/?elib=16939
https://www.researchgate.net/publication/258333577_Modeling_the_Harmonic_Exciter
https://www.researchgate.net/publication/258333577_Modeling_the_Harmonic_Exciter

(dx.)dx7_ampf

DX7 amplitude conversion function. 3 versions of this function are available:

o dx7_amp_bpf: BPF version (same as in the CSOUND toolkit)
e dx7_amp_func: estimated mathematical equivalent of dx7_amp_bpf
e dx7_ampf: default (sugar for dx7_amp_func)

Usage:
dx7AmpPreset : dx7_ampf_bpf
Where:

o dx7AmpPreset: DX7 amplitude value (0-99)

(dx.)dx7_egraterisef

DX envelope generator rise conversion function. 3 versions of this function are
available:

o dx7_egraterise_bpf: BPF version (same as in the CSOUND toolkit)
e dx7_egraterise_func: estimated mathematical equivalent of dx7_egraterise_bpf
e dx7_egraterisef: default (sugar for dx7_egraterise_func)

Usage:
dx7envelopeRise : dx7_egraterisef
Where:

e dx7envelopeRise: DX7 envelope rise value (0-99)

86

(dx.)dx7_egraterisepercf

DXT7 envelope generator percussive rise conversion function. 3 versions of this
function are available:

e dx7_egrateriseperc_bpf: BPF version (same as in the CSOUND
toolkit)

e dx7_egrateriseperc_func: estimated mathematical equivalent of
dx7_egrateriseperc_bpf

o dx7_egrateriseperct: default (sugar for dx7_egrateriseperc_func)

Usage:
dx7envelopePercRise : dx7_egrateriseperct
Where:

e dx7envelopePercRise: DXT7 envelope percussive rise value (0-99)

(dx.)dx7_egratedecayf

DXT7 envelope generator decay conversion function. 3 versions of this function
are available:

e dx7_egratedecay_bpf: BPF version (same as in the CSOUND toolkit)

e dx7_egratedecay_func: estimated mathematical equivalent of
dx7_egratedecay_bpf

e dx7_egratedecayf: default (sugar for dx7_egratedecay_func)

Usage:
dx7envelopeDecay : dx7_egratedecayf
Where:

o dx7envelopeDecay: DX7 envelope decay value (0-99)

87

(dx.)dx7_egratedecayperct

DXT7 envelope generator percussive decay conversion function. 3 versions of this
function are available:

o dx7_egratedecayperc_bpf: BPF version (same as in the CSOUND
toolkit)

e dx7_egratedecayperc_func: estimated mathematical equivalent of
dx7_egratedecayperc_bpf

o dx7_egratedecayperct: default (sugar for dx7_egratedecayperc_func)

Usage:
dx7envelopePercDecay : dx7_egratedecaypercf
Where:

e dx7envelopePercDecay: DX7 envelope decay value (0-99)

(dx.)dx7_eglv2peakf

DXT7 envelope level to peak conversion function. 3 versions of this function are
available:

o dx7_eglv2peak_bpf: BPF version (same as in the CSOUND toolkit)
o dx7_eglv2peak_func: estimated mathematical equivalent of dx7_eglv2peak_bpf
o dx7_eglv2peakf: default (sugar for dx7_eglv2peak_func)

Usage:
dx7Level : dx7_eglv2peakf : _
Where:

o dx7Level: DXT7 level value (0-99)

88

(dx.)dx7_velsensf

DXT7 velocity sensitivity conversion function.
Usage:
dx7Velocity : dx7_velsensf

Where:

e dx7Velocity: DX7 level value (0-8)

(dx.)dx7_fdbkscalef

DXT7 feedback scaling conversion function.

Usage:
dx7Feedback : dx7_fdbkscalef : _
Where:

e dx7Feedback: DX7 feedback value

(dx.)dx7_op

DX7 Operator. Implements a phase-modulable sine wave oscillator connected
to a DXT7 envelope generator.

Usage:
dx7_op(freq,phaseMod,outlev,R1,R2,R3,R4,L1,L2,L3,L4,keyVel,rateScale,type,gain,gate)
Where:

e freq: frequency of the oscillator

89

¢ phaseMod: phase deviation (-1 - 1)

o outLev: preset output level (0-99)

e R1: preset envelope rate 1 (0-99)

e R2: preset envelope rate 2 (0-99)

e R3: preset envelope rate 3 (0-99)

e R4: preset envelope rate 4 (0-99)

e L1: preset envelope level 1 (0-99)

e L2: preset envelope level 2 (0-99)

e L3: preset envelope level 3 (0-99)

e L4: preset envelope level 4 (0-99)

o keyVel: preset key velocity sensitivity (0-99)
e rateScale: preset envelope rate scale
e type: preset operator type

e gain: general gain

e gate: trigger signal

(dx.)dx7_algo

DX7 algorithms. Implements the 32 DX7 algorithms (a quick Google search
should give your more details on this). Each algorithm uses 6 operators.

Usage:
dx7_algo(algN,egR1,egR2,egR3,egR4,egll,egl2,egl3,egl4,outlevel ,keyVelSens,ampModSens, opMode.
Where:

o algN: algorithm number (0-31, should be an int...)

o egR1: preset envelope rates 1 (a list of 6 values between 0-99)

o egR2: preset envelope rates 2 (a list of 6 values between 0-99)

o egR3: preset envelope rates 3 (a list of 6 values between 0-99)

e egR4: preset envelope rates 4 (a list of 6 values between 0-99)

e egll: preset envelope levels 1 (a list of 6 values between 0-99)

o egl2: preset envelope levels 2 (a list of 6 values between 0-99)

o egl3: preset envelope levels 3 (a list of 6 values between 0-99)

o egl4: preset envelope levels 4 (a list of 6 values between 0-99)

e outLev: preset output levels (a list of 6 values between 0-99)

o keyVel: preset key velocity sensitivities (a list of 6 values between 0-99)
o ampModSens: preset amplitude sensitivities (a list of 6 values between 0-99)
¢ opMode: preset operator mode (a list of 6 values between 0-1)

o opFreq: preset operator frequencies (a list of 6 values between 0-99)

90

o opDetune: preset operator detuning (a list of 6 values between 0-99)

o opRateScale: preset operator rate scale (a list of 6 values between 0-99)
o feedback: preset operator feedback (a list of 6 values between 0-99)

e 1foDelay: preset LFO delay (a list of 6 values between 0-99)

e 1foDepth: preset LFO depth (a list of 6 values between 0-99)

e 1foSpeed: preset LFO speed (a list of 6 values between 0-99)

o freq: fundamental frequency

e gain: general gain

o gate: trigger signal

(dx.)dx7_ui

Generic DX7 function where all parameters are controllable using UI elements.
The master-with-mute branch must be used for this function to work... This
function is MIDI-compatible.

Usage

dx7_ui : _

envelopes.lib

This library contains a collection of envelope generators. Its official prefix is en.

Functions Reference
(en.)smoothEnvelope

An envelope with an exponential attack and release. smoothEnvelope is a
standard Faust function.

Usage
smoothEnvelope(ar,t)
e ar: attack and release duration (s)

91

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)ar

AR (Attack, Release) envelope generator (useful to create percussion envelopes).
ar is a standard Faust function.

Usage
ar(at,rt,t)
Where:

o at: attack (sec)

e rt: release (sec)

e t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)arfe

ARFE (Attack and Release-to-Final-value Exponentially) envelope generator.
Approximately equal to smoothEnvelope(Attack/6.91) when Attack == Re-
lease.

Usage
arfe(a,r,f,t)
Where:

e a, r: attack (sec), release (sec)
o f: final value to approach upon release (such as 0)
o t: trigger signal (attack is triggered when t>0, release is triggered when

t=0)

92

(en.)are

ARE (Attack, Release) envelope generator with Exponential segments. Approx-
imately equal to smoothEnvelope(Attack/6.91) when Attack == Release.

Usage

are(a,r,t)

Where:

o a: attack (sec)

o r: release (sec)

e t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)asr

ASR (Attack, Sustain, Release) envelope generator. asr is a standard Faust
function.

Usage
asr(at,sl,rt,t)
Where:

o at: attack (sec)

o sl: sustain level (between 0..1)

o 1: release (sec)

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)adsr

ADSR (Attack, Decay, Sustain, Release) envelope generator. adsr is a standard
Faust function.

93

Usage
adsr(at,dt,sl,rt,gate)
Where:

o at: attack time (sec)

e dt: decay time (sec)

o sl: sustain level (between 0..1)

e rt: release time (sec)

o gate: trigger signal (attack is triggered when gate>0, release is triggered
when gate=0)

(en.)adsre

ADSRE (Attack, Decay, Sustain, Release) envelope generator with Exponential
segments.

Usage

adsre(a,d,s,r,g)
Where:

: attack (sec)

: decay (sec)

: sustain (fraction of t: 0-1)

: release (sec)

: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

.
d H n o

(en.)asre

ASRE (Attack, Sustain, Release) envelope generator with Exponential seg-
ments.

94

Usage

asre(a,s,r,g)
Where:

a: attack (sec)
s: sustain (fraction of t: 0-1)

o r: release (sec)
t: trigger signal (attack is triggered when t>0, release is triggered when
t

(en.)dx7envelope

DXT7 operator envelope generator with 4 independent rates and levels. It is
essentially a 4 points BPF.

Usage
dx7_envelope(R1,R2,R3,R4,L1,1L2,L3,L4,t)
Where:

e RN: rates in seconds
o LN: levels (0-1)
e t: trigger signal

filters.lib

Faust Filters library; Its official prefix is fi.

The Filters library is organized into 18 sections:

o Basic Filters

e Comb Filters

e Direct-Form Digital Filter Sections

e Direct-Form Second-Order Biquad Sections

95

o Ladder/Lattice Digital Filters

e Useful Special Cases

o Ladder/Lattice Allpass Filters

« Digital Filter Sections Specified as Analog Filter Sections
¢ Simple Resonator Filters

o Butterworth Lowpass/Highpass Filters

¢ Special Filter-Bank Delay-Equalizing Allpass Filters

o Elliptic (Cauer) Lowpass Filters

o Elliptic Highpass Filters

o Butterworth Bandpass/Bandstop Filters

o Elliptic Bandpass Filters

o Parametric Equalizers (Shelf, Peaking)

e Mth-Octave Filter-Banks

¢ Arbitrary-Crossover Filter-Banks and Spectrum Analyzers

For more information, see ../documentation/library.pdf
Basic Filters

(fi.)zero

One zero filter. Difference equation: y(n) = z(n) — zz(n — 1).
Usage

_ : zero(z) _

Where:

o z: location of zero along real axis in z-plane

Reference

https://cerma.stanford.edu/~jos/filters/One_ Zero.html

(fi.)pole

One pole filter. Could also be called a “leaky integrator”. Difference equation:
y(n) = z(n) + py(n —1).

96

https://ccrma.stanford.edu/~jos/filters/One_Zero.html

Usage
_ : pole(p)
Where:

e p: pole location = feedback coefficient

Reference

https://ccrma.stanford.edu/~jos/filters/One_ Pole.html

(fi.)integrator

Same as pole(1) [implemented separately for block-diagram clarity].

(fi.)dcblockerat
DC blocker with configurable break frequency. The amplitude response is sub-

stantially flat above fb, and sloped at about +6 dB/octave below fb. De-

rived from the analog transfer function H(s) = m by the low-frequency-

matching bilinear transform method (i.e., the standard frequency-scaling con-
stant 2*SR).

Usage
_ : dcblockerat (fb)
Where:

e fb: “break frequency” in Hgz, i.e., -3 dB gain frequency.

Reference

https://cerma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

97

https://ccrma.stanford.edu/~jos/filters/One_Pole.html
https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html

(fi.)dcblocker
DC blocker. Default dc blocker has -3dB point near 35 Hz (at 44.1 kHz) and

high-frequency gain near 1.0025 (due to no scaling). dcblocker is as standard
Faust function.

Usage

_ : dcblocker : _

Comb Filters
(fi.)ff_comb

Feed-Forward Comb Filter. Note that ff_comb requires integer delays (uses
delay internally). £f_comb is a standard Faust function.

Usage
_ : ff_comb(maxdel,intdel,b0,bM)
Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e b0O: gain applied to delay-line input

e DbM: gain applied to delay-line output and then summed with input

Reference

https://ccrma.stanford.edu/~jos/pasp/Feedforward_ Comb_ Filters.html

(fi.)ff_fcomb

Feed-Forward Comb Filter. Note that £ff_fcomb takes floating-point delays
(uses fdelay internally). £f_fcomb is a standard Faust function.

98

https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html

Usage
_ : ff_fcomb(maxdel,del,bO,bM)
Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input

e bM: gain applied to delay-line output and then summed with input

Reference

https://cerma.stanford.edu/~jos/pasp/Feedforward__Comb_ Filters.html

(fi.)ffcombfilter

Typical special case of £f_comb() where: b0 = 1.

(fi.)fb_comb

Feed-Back Comb Filter (integer delay).

Usage
_ : fb_comb(maxdel,intdel,b0,aN)
Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel

o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input and forwarded to output

e aN: minus the gain applied to delay-line output before summing with the
input and feeding to the delay line

99

https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html

Reference

https://ccrma.stanford.edu/~jos/pasp/Feedback__Comb_ Filters.html

(fi.)fb_fcomb

Feed-Back Comb Filter (floating point delay).

Usage
_ : fb_fcomb(maxdel,del,b0,aN)
Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel

o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input and forwarded to output

e al: minus the gain applied to delay-line output before summing with the
input and feeding to the delay line

Reference

https://ccrma.stanford.edu/~jos/pasp/Feedback__Comb_ Filters.html

(fi.)revl

Special case of fb_comb (revl(maxdel,N,g)). The “revl section” dates back
to the 1960s in computer-music reverberation. See the jcrev and brassrev in
reverbs.1ib for usage examples.

(fi.)fbcombfilter and (fi.)ffbcombfilter

Other special cases of Feed-Back Comb Filter.

100

https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html

Usage

_ : fbcombfilter (maxdel,intdel,g)
_ : ffbcombfilter(maxdel,del,g)

Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e g: feedback gain

Reference

https://ccrma.stanford.edu/~jos/pasp/Feedback__Comb_ Filters.html

(fi.)allpass_comb
Schroeder Allpass Comb Filter. Note that
allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);

which is a direct-form-1 implementation, requiring two delay lines. The imple-
mentation here is direct-form-2 requiring only one delay line.

Usage
_ @ allpass_comb(maxdel,intdel,aN)
Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e aN: minus the feedback gain

References

o https://ccrma.stanford.edu/~jos/pasp/Allpass_ Two_ Combs.html
o https://ccrma.stanford.edu/~jos/pasp/Schroeder_ Allpass_ Sections.html
o https://ccrma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

101

https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html
https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html
https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html

(fi.)allpass_fcomb

Schroeder Allpass Comb Filter. Note that
allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);

which is a direct-form-1 implementation, requiring two delay lines. The imple-
mentation here is direct-form-2 requiring only one delay line.

allpass_fcomb is a standard Faust library.

Usage

_ : allpass_comb(maxdel,intdel,aN)
_ : allpass_fcomb(maxdel,del,aN)

Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (float) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e aN: minus the feedback gain

References

o https://ccrma.stanford.edu/~jos/pasp/Allpass_ Two_ Combs.html
o https://ccrma.stanford.edu/~jos/pasp/Schroeder_ Allpass Sections.html
o https://ccrma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

(fi.)rev2

Special case of allpass_comb (rev2(maxlen,len,g)). The “rev2 section” dates
back to the 1960s in computer-music reverberation. See the jcrev and brassrev
in reverbs.1lib for usage examples.

102

https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html
https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html
https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html

(fi.)allpass_fcomb5 and (fi.)allpass_fcombla

Same as allpass_fcomb but use fdelay5 and fdelayla internally (Interpola-
tion helps - look at an fft of faust2octave on

€1-1’ <: allpass_fcomb(1024,10.5,0.95), allpass_fcomb5(1024,10.5,0.95);).

Direct-Form Digital Filter Sections
(fi.)iir

Nth-order Infinite-Impulse-Response (IIR) digital filter, implemented in terms
of the Transfer-Function (TF) coefficients. Such filter structures are termed
“direct form”.

iir is a standard Faust function.

Usage

_ : iir(bcoeffs,acoeffs)

Where:

o order: filter order (int) = max(#poles,#zeros)
e bcoeffs: (b0,bl,...,b_order) = TF numerator coefficients
o acoeffs: (al,...,a_order) = TF denominator coeffs (a0=1)

Reference

https://cerma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

(fi.)fir

FIR filter (convolution of FIR filter coefficients with a signal)

103

https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html

Usage
_ : fir(bv)

fir is standard Faust function.

Where:

e bv = b0,bl,... bn is a parallel bank of coefficient signals.

Note

bv is processed using pattern-matching at compile time, so it must have this
normal form (parallel signals).

Example

Smoothing white noise with a five-point moving average:

bv = .2,.2,.2,.2,.2;
process = noise : fir(bv);

Equivalent (note double parens):

process = noise : fir((.2,.2,.2,.2,.2));

(fi.)conv and (fi.)convN

Convolution of input signal with given coefficients.

Usage
conv((k1,k2,k3,...,kN)) : _; // Argument = one signal bank
convN(N, (k1,k2,k3,...)) : _; // Useful when N < count((kil,...))

(fi.)tf1, (fi.)tf2 and (£fi.)t£f3

t{N = N’th-order direct-form digital filter.

104

Usage

: tf1(b0,bl,al) _
: tf2(b0,b1,b2,a1,a2) _
: t£3(b0,b1,b2,b3,a1,a2,a3)

Where:

e a: the poles
e b: the zeros

Reference

https://ccrma.stanford.edu/~jos/fp/Direct_ Form_ Lhtml

(fi.)notchw

Simple notch filter based on a biquad (t£2). notchw is a standard Faust func-
tion.

Usage:
_ : notchw(width,freq)
Where:

o width: “notch width” in Hz (approximate)
e freq: “notch frequency” in Hz

Reference

https://cerma.stanford.edu/~jos/pasp/Phasing_ 2nd__Order__Allpass_ Filters.
html

Direct-Form Second-Order Biquad Sections

Direct-Form Second-Order Biquad Sections

105

https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html
https://ccrma.stanford.edu/~jos/pasp/Phasing_2nd_Order_Allpass_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Phasing_2nd_Order_Allpass_Filters.html

Reference

https://ccrma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

(£i.)tf21, (£i.)t£22, (fi.)t£22t and (fi.)tf21t

tfN = N’th-order direct-form digital filter where:

o tf21 is tf2, direct-form 1
e t£22 is tf2, direct-form 2
e tf22t is tf2, direct-form 2 transposed
e tf21t is tf2, direct-form 1 transposed

Usage

: t£21(b0,bl1,b2,al1,a2)
: t£22(b0,b1,b2,al1,a2)
1 t£22t(b0,bl1,b2,al,a2)
: t£21t(b0,bl1,b2,al,a2)

Where:

e a: the poles
e b: the zeros

Reference

https://cerma.stanford.edu/~jos/fp/Direct__Form_ Ihtml

Ladder/Lattice Digital Filters

Ladder and lattice digital filters generally have superior numerical properties
relative to direct-form digital filters. They can be derived from digital waveguide
filters, which gives them a physical interpretation.

(fi.)av2sv

Compute reflection coeflicients sv from transfer-function denominator av.

106

https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html
https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html

Usage

sv = av2sv(av)

Where:
e av: parallel signal bank a1, ...,aN
e sv: parallel signal bank s1,...,sN

where ro = ith reflection coefficient, and ai = coefficient of z”~ (-i) in the filter
transfer-function denominator A(z).

Reference

https://ccrma.stanford.edu/~jos/filters/Step_ Down_ Procedure.html (where
reflection coefficients are denoted by k rather than s).

(fi.)bvav2nuv

Compute lattice tap coefficients from transfer-function coefficients.

Usage
nuv = bvav2nuv(bv,av)
Where:

e av: parallel signal bank al,...,aN
e bv: parallel signal bank b0,b1,...,aN
e nuv: parallel signal bank nui,...,nuN

where nui is the i’th tap coefficient, bi is the coefficient of z~(-i) in the filter
numerator, ai is the coefficient of z~(-1) in the filter denominator

(fi.)iir_lat2

Two-multiply latice IIR filter of arbitrary order.

107

https://ccrma.stanford.edu/~jos/filters/Step_Down_Procedure.html

Usage
_ ¢ iir_lat2(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

(fi.)allpassnt

Two-multiply lattice allpass (nested order-1 direct-form-ii allpasses).

Usage
_ : allpassnt(n,sv)
Where:

o n: the order of the filter
o sv: the reflection coefficients (-1 1)

(fi.)iir_k1
Kelly-Lochbaum ladder IIR filter of arbitrary order.
Usage

_ : diir_kl(bv,av)

Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

108

(fi.)allpassnklt

Kelly-Lochbaum ladder allpass.

Usage:
_ @ allpassklt(n,sv)
Where:

e n: the order of the filter
o sv: the reflection coefficients (-1 1)

(fi.)iir_lati

One-multiply latice IIR filter of arbitrary order.

Usage
_ ¢ iir_lati(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

(fi.)allpassnimt

One-multiply lattice allpass with tap lines.

Usage
_ ¢ allpassnimt(n,sv)
Where:

o n: the order of the filter
o sv: the reflection coefficients (-1 1)

109

(fi.)iir_nl

Normalized ladder filter of arbitrary order.

Usage
_ ¢ iir_nl(bv,av)
Where:
e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals
References

e J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York:

Springer Verlag, 1976.
o https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_ Junctions.

html

(fi.)allpassnnlt

Normalized ladder allpass filter of arbitrary order.

Usage:
_ @ allpassnnlt(n,sv)
Where:

o n: the order of the filter
o sv: the reflection coefficients (-1,1)

References

e J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York:

Springer Verlag, 1976.
o https://ccrma.stanford.edu/~jos/pasp/Normalized Scattering Junctions.

html

110

https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html

Useful Special Cases
(£i.)tf2np

Biquad based on a stable second-order Normalized Ladder Filter (more robust
to modulation than t£2 and protected against instability).

Usage
_ : tf2np(b0,bl1,b2,al,a2)
Where:

e a: the poles
e b: the zeros

(fi.)wgr

Second-order transformer-normalized digital waveguide resonator.
Usage

_ : wgr(f,r)

Where:

o f: resonance frequency (Hz)
o 1r: loss factor for exponential decay (set to 1 to make a numerically stable
oscillator)

References

o https://ccrma.stanford.edu/~jos/pasp/Power_ Normalized Waveguide__
Filters.html

« https://ccrma.stanford.edu/~jos/pasp/Digital Waveguide Oscillator.
html

111

https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html

(fi.)nlf2

Second order normalized digital waveguide resonator.
Usage

_ : nlf2(f,r)

Where:

o f: resonance frequency (Hz)
o 1: loss factor for exponential decay (set to 1 to make a sinusoidal oscillator)

Reference

https://ccrma.stanford.edu/~jos/pasp/Power_ Normalized Waveguide_
Filters.html

(fi.)apnl

Passive Nonlinear Allpass based on Pierce switching springs idea. Switch be-
tween allpass coeflicient al and a2 at signal zero crossings.

Usage

_ : apnl(al,a?)

Where:

e al and a2: allpass coefficients

Reference

e “A Passive Nonlinear Digital Filter Design ...” by John R. Pierce and
Scott A. Van Duyne, JASA, vol. 101, no. 2, pp. 1120-1126, 1997

112

https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html

Ladder/Lattice Allpass Filters
An allpass filter has gain 1 at every frequency, but variable phase. Ladder/lattice

allpass filters are specified by reflection coefficients. They are defined here as
nested allpass filters, hence the names allpassn™.

References

o https://ccrma.stanford.edu/~jos/pasp/Conventional Ladder_ Filters.
html

e https://ccrma.stanford.edu/~jos/pasp/Nested__Allpass_ Filters.html

e Linear Prediction of Speech, Markel and Gray, Springer Verlag, 1976

(fi.)allpassn

Two-multiply lattice - each section is two multiply-adds.

Usage:

_ @ allpassn(n,sv)

Where:

e n: the order of the filter
o sv: the reflection coefficients (-1 1)

References

e J. O. Smith and R. Michon, “Nonlinear Allpass Ladder Filters in FAUST”,
in Proceedings of the 14th International Conference on Digital Audio Ef-
fects (DAFx-11), Paris, France, September 19-23, 2011.

(fi.)allpassnn
Normalized form - four multiplies and two adds per section, but coefficients can

be time varying and nonlinear without “parametric amplification” (modulation
of signal energy).

113

https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Nested_Allpass_Filters.html

Usage:
allpassnn(n,tv)
Where:

e n: the order of the filter
o tv: the reflection coefficients (-PI PI)

(fi.)allpasskl

Kelly-Lochbaum form - four multiplies and two adds per section, but all signals
have an immediate physical interpretation as traveling pressure waves, etc.

Usage:
_ : allpassnkl(n,sv)
Where:

e n: the order of the filter
o sv: the reflection coefficients (-1 1)

(fi.)allpassim

One-multiply form - one multiply and three adds per section. Normally the
most efficient in special-purpose hardware.

Usage:
_ @ allpassnim(n,sv)
Where:

o n: the order of the filter
o sv: the reflection coefficients (-1 1)

114

Digital Filter Sections Specified as Analog Filter Sections
(£fi.)tf2s and (fi.)tf2snp

Second-order direct-form digital filter, specified by ANALOG transfer-function
polynomials B(s)/A(s), and a frequency-scaling parameter. Digitization via the
bilinear transform is built in.

Usage
_ : tf2s(b2,b1,b0,al,ald,wl)
Where:

b2 s72 + bl s + bO

s72 + al s + a0

and wil is the desired digital frequency (in radians/second) corresponding to
analog frequency 1 rad/sec (i.e., s = j).

Example

A second-order ANALOG Butterworth lowpass filter, normalized to have cutoff
frequency at 1 rad/sec, has transfer function

s72 +al s + 1

where al = sqrt(2). Therefore, a DIGITAL Butterworth lowpass cutting off
at SR/4 is specified as t£2s(0,0,1,sqrt(2),1,PI*SR/2) ;

Method

Bilinear transform scaled for exact mapping of wl.

Reference

https://ccrma.stanford.edu/~jos/pasp/Bilinear Transformation.html

115

https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html

(fi.)tf3slf
Analogous to tf2s above, but third order, and using the typical low-frequency-
matching bilinear-transform constant 2/T (“1f” series) instead of the specific-

frequency-matching value used in tf2s and tfls. Note the lack of a “w1” argu-
ment.

Usage

_ : tf3s1lf(b3,b2,b1,b0,a3,a2,al,al)

(fi.)tfls

First-order direct-form digital filter, specified by ANALOG transfer-function
polynomials B(s)/A(s), and a frequency-scaling parameter.

Usage
tf1s(b1,b0,a0,wl)
Where:

bl s + b0

H(s) = s + a0

and w1 is the desired digital frequency (in radians/second) corresponding to
analog frequency 1 rad/sec (i.e., s = j).

Example

A first-order ANALOG Butterworth lowpass filter, normalized to have cutoff
frequency at 1 rad/sec, has transfer function

H(s) = ——s+1

so b0 = a0 = 1 and bl = 0. Therefore, a DIGITAL first-order Butterworth
lowpass with gain -3dB at SR/4 is specified as

tf1s(0,1,1,PI*SR/2); // digital half-band order 1 Butterworth

116

Method

Bilinear transform scaled for exact mapping of wl.

Reference

https://cerma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

(fi.)tf2sb

Bandpass mapping of tf2s: In addition to a frequency-scaling parameter wi
(set to HALF the desired passband width in rad/sec), there is a desired center-
frequency parameter we (also in rad/s). Thus, t£2sb implements a fourth-order
digital bandpass filter section specified by the coefficients of a second-order
analog lowpass prototype section. Such sections can be combined in series for
higher orders. The order of mappings is (1) frequency scaling (to set lowpass
cutoff wl), (2) bandpass mapping to wc, then (3) the bilinear transform, with
the usual scale parameter 2*SR. Algebra carried out in maxima and pasted here.

Usage

_ : tf2sb(b2,b1,b0,al,al,wl,wc)

(fi.)tfisdb

First-to-second-order lowpass-to-bandpass section mapping, analogous to tf2sb
above.

Usage

_ : tf1sb(b1,b0,a0,wl,wc)

Simple Resonator Filters
(fi.)resonlp

Simple resonant lowpass filter based on tf2s (virtual analog). resonlp is a
standard Faust function.

117

https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html

Usage

_ : resonlp(fc,Q,gain)
_ : resonhp(fc,Q,gain)
_ @ resonbp(fc,Q,gain)

Where:

o fc: center frequency (Hz)
e Q:q
e gain: gain (0-1)

(fi.)resonhp

Simple resonant highpass filters based on tf2s (virtual analog). resonhp is a
standard Faust function.

Usage

: resonlp(fc,Q,gain)
: resonhp(fc,Q,gain)
: resonbp(fc,Q,gain)

Where:

e fc: center frequency (Hz)
e Qiq
e gain: gain (0-1)

(fi.)resonbp

Simple resonant bandpass filters based on t£2s (virtual analog). resonbp is a
standard Faust function.

118

Usage

_ : resonlp(fc,Q,gain)
_ : resonhp(fc,Q,gain)
_ @ resonbp(fc,Q,gain)

Where:
o fc: center frequency (Hz)

e Q:q
e gain: gain (0-1)

Butterworth Lowpass/Highpass Filters

(fi.)lowpass

Nth-order Butterworth lowpass filter. lowpass is a standard Faust function.
Usage

_ : lowpass(N,fc)

Where:

o N: filter order (number of poles) [nonnegative constant integer]
e fc: desired cut-off frequency (-3dB frequency) in Hz

References

o https://ccrma.stanford.edu/~jos/filters/Butterworth_ Lowpass_ Design.
html
e butter function in Octave (" [z,p,g] = butter(N,1,'s');")

(fi.)highpass

Nth-order Butterworth highpass filters. highpass is a standard Faust function.

119

https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html
https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html

Usage
_ : highpass(N,fc)
Where:

o N: filter order (number of poles) [nonnegative constant integer]
e fc: desired cut-off frequency (-3dB frequency) in Hz

References

e https://ccrma.stanford.edu/~jos/filters/Butterworth Lowpass_ Design.
html
¢ butter function in Octave (" [z,p,g] = butter(N,1,'s');")

(fi.)lowpassO_highpass1
Special Filter-Bank Delay-Equalizing Allpass Filters

These special allpass filters are needed by filterbank et al. below. They are
equivalent to (lowpass (N,fc) +|- highpass (N, fc)) /2, but with canceling pole-
zero pairs removed (which occurs for odd N).

(fi.)lowpass_plus|minus_highpass
Elliptic (Cauer) Lowpass Filters

Elliptic (Cauer) Lowpass Filters

References

o <http://en.wikipedia.org/wiki/Elliptic_ filter
o functions ncauer and ellip in Octave

(fi.)lowpass3e

Third-order Elliptic (Cauer) lowpass filter.

120

https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html
https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html

Usage
_ @ lowpass3e(fc)
Where:

e fc: -3dB frequency in Hz

Design

For spectral band-slice level display (see octave_analyzer3e):

[z,p,g] = ncauer(Rp,Rs,3); 7 analog zeros, poles, and gain, where
Rp = 60 Y dB ripple in stopband
Rs = 0.2 J dB ripple in passband

(fi.)lowpass6e

Sixth-order Elliptic/Cauer lowpass filter.
Usage

_ ¢ lowpass6e(fc)

Where:

e fc: -3dB frequency in Hz

Design

For spectral band-slice level display (see octave_analyzer6e):

[z,p,g] = ncauer(Rp,Rs,6); % analog zeros, poles, and gain, where
Rp = 80 % dB ripple in stopband
Rs = 0.2 % dB ripple in passband

121

Elliptic Highpass Filters
(fi.)highpass3e

Third-order Elliptic (Cauer) highpass filter. Inversion of lowpass3e wrt unit
circle in s plane (s <- 1/s)

Usage
_ ¢ highpass3e(fc)
Where:

e fc: -3dB frequency in Hz

(fi.)highpass6e

Sixth-order Elliptic/Cauer highpass filter. Inversion of lowpass3e wrt unit circle
in s plane (s <- 1/s)

Usage
_ : highpass6e(fc)
Where:

e fc: -3dB frequency in Hz

Butterworth Bandpass/Bandstop Filters

(fi.)bandpass

Order 2*Nh Butterworth bandpass filter made using the transformation s <- s
+ wc"2/s on lowpass(Nh), where wc is the desired bandpass center frequency.

The lowpass(Nh) cutoff wl is half the desired bandpass width. bandpass is a
standard Faust function.

122

Usage
_ : bandpass(Nh,fl,fu)
Where:

e Nh: HALF the desired bandpass order (which is therefore even)

e fl: lower -3dB frequency in Hz

e fu: upper -3dB frequency in Hz Thus, the passband width is fu-f1, and
its center frequency is (£1+fu)/2.

Reference

http://cnx.org/content/m16913/latest/

(fi.)bandstop

Order 2*Nh Butterworth bandstop filter made using the transformation s <- s
+ wc”2/s on highpass(Nh), where wc is the desired bandpass center frequency.
The highpass (Nh) cutoff wi is half the desired bandpass width. bandstop is a
standard Faust function.

Usage
_ : bandstop(Nh,fl,fu)
Where:

e Nh: HALF the desired bandstop order (which is therefore even)

e f1: lower -3dB frequency in Hz

o fu: upper -3dB frequency in Hz Thus, the passband (stopband) width is
fu-f1, and its center frequency is (£1+fu)/2.

Reference

http://cnx.org/content/m16913/latest/

123

http://cnx.org/content/m16913/latest/
http://cnx.org/content/m16913/latest/

Elliptic Bandpass Filters
(fi.)bandpass6e

Order 12 elliptic bandpass filter analogous to bandpass(6).

(fi.)bandpassi2e

Order 24 elliptic bandpass filter analogous to bandpass(6).

(fi.)pospass

Positive-Pass Filter (single-side-band filter)

Usage
_ : pospass(N,fc) : _,_
where

e N: filter order (Butterworth bandpass for positive frequencies).
e fc: lower bandpass cutoff frequency in Hz.

— Highpass cutoff frequency at ma.SR/2 - fc Hz.

Example

e See dm.pospass__ demo
e Look at frequency response:

Method

A filter passing only positive frequencies can be made from a half-band low-
pass by modulating it up to the positive-frequency range. Equivalently, down-
modulate the input signal using a complex sinusoid at -SR/4 Hz, lowpass it with
a half-band filter, and modulate back up by SR/4 Hz. In Faust/math notation:

pospass(N) = #(e75") : lowpass(N,SR/4) : +(e/3")

An approximation to the Hilbert transform is given by the imaginary output

signal:

hilbert(N) = pospass(N) : !,*(2);

124

References

o https://ccrma.stanford.edu/~jos/mdft/Analytic_ Signals Hilbert
Transform.html

o https://ccrma.stanford.edu/~jos/sasp/Comparison__ Optimal_ Chebyshev__
FIR_ Ihtml

 https://ccrma.stanford.edu/~jos/sasp/Hilbert_ Transform.html

Parametric Equalizers (Shelf, Peaking)

Parametric Equalizers (Shelf, Peaking).

References

¢ http://en.wikipedia.org/wiki/Equalization

o http://www.musicdsp.org/files/ Audio- EQ-Cookbook.txt

e Digital Audio Signal Processing, Udo Zolzer, Wiley, 1999, p. 124

o https://ccrma.stanford.edu/~jos/filters/Low_ High_ Shelving_ Filters.html>
 https://ccrma.stanford.edu/~jos/filters/Peaking Equalizers.html>

e maxmsp.lib in the Faust distribution

e bandfilter.dsp in the faust2pd distribution

(fi.)low_shelf

First-order “low shelf” filter (gain boost|cut between dc and some frequency)
low_shelf is a standard Faust function.

Usage

_ : lowshelf(N,LO,fx) : _
_ ¢ low_shelf(LO,fx) : _ // default case (order 3)
_ ¢ lowshelf_other_freq(N,LO,fx)

Where: * N: filter order 1, 3, 5, ... (odd only). (default should be 3) * LO:
desired level (dB) between dc and fx (boost L0>0 or cut L0<0) * fx: -3dB
frequency of lowpass band (L0>0) or upper band (L0<0) (see “SHELF SHAPE”
below).

The gain at SR/2 is constrained to be 1. The generalization to arbitrary odd
orders is based on the well known fact that odd-order Butterworth band-splits
are allpass-complementary (see filterbank documentation below for references).

125

https://ccrma.stanford.edu/~jos/mdft/Analytic_Signals_Hilbert_Transform.html
https://ccrma.stanford.edu/~jos/mdft/Analytic_Signals_Hilbert_Transform.html
https://ccrma.stanford.edu/~jos/sasp/Comparison_Optimal_Chebyshev_FIR_I.html
https://ccrma.stanford.edu/~jos/sasp/Comparison_Optimal_Chebyshev_FIR_I.html
https://ccrma.stanford.edu/~jos/sasp/Hilbert_Transform.html
http://en.wikipedia.org/wiki/Equalization
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt

Shelf Shape

The magnitude frequency response is approximately piecewise-linear on a log-
log plot (“BODE PLOT?”). The Bode “stick diagram” approximation L(If) is
easy to state in dB versus dB-frequency If = dB(f):

« LO>0:
o L(If) = LO, f between 0 and fx = 1st corner frequency;
o L(If) = LO - N * (If - lfx), f between fx and {2 = 2nd corner frequency;
o L(f) =0, If > If2.
e 1f2 = 1lfx + LO/N = dB-frequency at which level gets back to 0 dB.
« LO<O:
o L(If) = LO, f between 0 and fl1 = 1st corner frequency;
o L(f) =-N* (Ifx - If), f between 1 and lfx = 2nd corner frequencys;
o« L) =0, If > Ifx.
1

= Ifx + LO/N = dB-frequency at which level goes up from LO.

See lowshelf_other_freq.

(fi.)high_shelf

First-order “high shelf” filter (gain boost|cut above some frequency).
high_shelf is a standard Faust function.

Usage

_ : highshelf(N,Lpi,fx) : _
_ ¢ high_shelf(LO,fx) : _ // default case (order 3)
_ : highshelf_other_freq(N,Lpi,fx)

Where:

o N: filter order 1, 3, 5, ... (odd only).

e Lpi: desired level (dB) between fx and SR/2 (boost Lpi>0 or cut Lpi<0)

o fx: -3dB frequency of highpass band (L0>0) or lower band (L0<0) (Use
highshelf other freq() below to find the other one.)

The gain at dc is constrained to be 1. See lowshelf documentation above for
more details on shelf shape.

126

(fi.)peak_eq

Second order “peaking equalizer” section (gain boost or cut near some fre-
quency) Also called a “parametric equalizer” section. peak_eq is a standard

Faust function.

Usage
_ : peak_eq(Lfx,fx,B) : _;
Where:

o Lfx: level (dB) at fx (boost Lfx>0 or cut Lfx<0)
o fx: peak frequency (Hz)
e B: bandwidth (B) of peak in Hz

(fi.)peak_eq_cq

Constant-Q second order peaking equalizer section.
Usage

_ : peak_eq_cq(Lfx,fx,Q) : _;

Where:

e Lfx: level (dB) at fx

e fx: boost or cut frequency (Hz)
e Q: “Quality factor” = fx/B where B = bandwidth of peak in Hz

(fi.)peak_eq_rm

Regalia-Mitra second order peaking equalizer section.

127

Usage
_ @ peak_eq_rm(Lfx,fx,tanPiBT) : _;
Where:

o Lfx: level (dB) at fx

o fx: boost or cut frequency (Hz)

o tanPiBT: tan(PI*B/SR), where B = -3dB bandwidth (Hz) when
10" (Lfx/20) = 0 ~ PI*B/SR for narrow bandwidths B

Reference

P.A. Regalia, S.K. Mitra, and P.P. Vaidyanathan, “The Digital All-Pass Fil-
ter: A Versatile Signal Processing Building Block” Proceedings of the IEEE,
76(1):19-37, Jan. 1988. (See pp. 29-30.)

(fi.)spectral_tilt

Spectral tilt filter, providing an arbitrary spectral rolloff factor alpha in (-1,1),
where -1 corresponds to one pole (-6 dB per octave), and +1 corresponds to one
zero (4+6 dB per octave). In other words, alpha is the slope of the In magnitude
versus In frequency. For a “pinking filter” (e.g., to generate 1/f noise from white
noise), set alpha to -1/2.

Usage
_ ¢ spectral_tilt(N,f0,bw,alpha)
Where:

o N: desired integer filter order (fixed at compile time)

e £0: lower frequency limit for desired roll-off band > 0

o bw: bandwidth of desired roll-off band

o alpha: slope of roll-off desired in nepers per neper, between -1 and 1 (In
mag / In radian freq)

Examples

See spectral_tilt_demo.

128

Reference

J.O. Smith and H.F. Smith, “Closed Form Fractional Integration and Differen-
tiation via Real Exponentially Spaced Pole-Zero Pairs”, arXiv.org publication
arXiv:1606.06154 [cs.CE], June 7, 2016, http://arxiv.org/abs/1606.06154

(fi.)levelfilter

Dynamic level lowpass filter. levelfilter is a standard Faust function.

Usage
_ : levelfilter(L,freq)
Where:
o L: desired level (in dB) at Nyquist limit (SR/2), e.g., -60

e freq: corner frequency (-3dB point) usually set to fundamental freq
e N: Number of filters in series where L = L/N

Reference

https://ccrma.stanford.edu/realsimple/faust_ strings/Dynamic_ Level
Lowpass_ Filter.html

(fi.)levelfilterN

Dynamic level lowpass filter.

Usage
_ ¢ levelfilterN(N,freq,L) _
Where:

o L: desired level (in dB) at Nyquist limit (SR/2), e.g., -60

o freq: corner frequency (-3dB point) usually set to fundamental freq
o N: Number of filters in series where L = L/N

129

https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html
https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html

Reference

https://ccrma.stanford.edu/realsimple/faust__strings/Dynamic_ Level _
Lowpass_ Filter.html

Mth-Octave Filter-Banks

Mth-octave filter-banks split the input signal into a bank of parallel signals,
one for each spectral band. They are related to the Mth-Octave Spectrum-
Analyzers in analysis.lib. The documentation of this library contains more
details about the implementation. The parameters are:

o M: number of band-slices per octave (>1)
o N: total number of bands (>2)
o ftop: upper bandlimit of the Mth-octave bands (<SR/2)

In addition to the Mth-octave output signals, there is a highpass signal contain-
ing frequencies from ftop to SR/2, and a “dc band” lowpass signal containing
frequencies from 0 (dc) up to the start of the Mth-octave bands. Thus, the N
output signals are

highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2~(-Mx(N-1)))

A Filter-Bank is defined here as a signal bandsplitter having the property that
summing its output signals gives an allpass-filtered version of the filter-bank
input signal. A more conventional term for this is an “allpass-complementary
filter bank”. If the allpass filter is a pure delay (and possible scaling), the filter
bank is said to be a “perfect-reconstruction filter bank” (see Vaidyanathan-1993
cited below for details). A “graphic equalizer”, in which band signals are scaled
by gains and summed, should be based on a filter bank.

The filter-banks below are implemented as Butterworth or Elliptic spectrum-
analyzers followed by delay equalizers that make them allpass-complementary.

Increasing Channel Isolation

Go to higher filter orders - see Regalia et al. or Vaidyanathan (cited below)
regarding the construction of more aggressive recursive filter-banks using elliptic
or Chebyshev prototype filters.

130

https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html
https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html

References

e “Tree-structured complementary filter banks using all-pass sections”,
Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484,
Dec. 1987

e “Multirate Systems and Filter Banks”, P. Vaidyanathan, Prentice-Hall,
1993

o Elementary filter theory: https://ccrma.stanford.edu/~jos/filters/

(fi.)mth_octave_filterbank[n]

Allpass-complementary filter banks based on Butterworth band-splitting. For
Butterworth band-splits, the needed delay equalizer is easily found.

Usage

_ : mth_octave_filterbank(0,M,ftop,N) : par(i,N,_); // Oth-order
_ : mth_octave_filterbank_alt(0,M,ftop,N) : par(i,N,_); // dc-inverted version

Also for convenience:

_ : mth_octave_filterbank3(M,ftop,N) : par(i,N,_); // 3rd-order Butterworth
_ : mth_octave_filterbank5(M,ftop,N) : par(i,N,_); // 5th-order Butterworth
mth_octave_filterbank_default = mth_octave_filterbank5;

Where:

0: order of filter used to split each frequency band into two
e M: number of band-slices per octave

o ftop: highest band-split crossover frequency (e.g., 20 kHz)
o N: total number of bands (including dec and Nyquist)

Arbitrary-Crossover Filter-Banks and Spectrum Analyzers

These are similar to the Mth-octave analyzers above, except that the band-split
frequencies are passed explicitly as arguments.

(fi.)filterbank

Filter bank. filterbank is a standard Faust function.

131

Usage
_ @ filterbank (0,freqs) : par(i,N,_); // Butterworth band-splits
Where:

 0: band-split filter order (ODD integer required for filterbank][i])
o fregs: (fcl,fc2,...,fcNs) [in numerically ascending order], where Ns=N-1
is the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ : filterbank(3, (fcl,fc2)) : _,_,_

(fi.)filterbanki

Inverted-dc filter bank.

Usage

_ @ filterbanki(0,freqs) : par(i,N,_); // Inverted-dc version
Where:

o 0: band-split filter order (ODD integer required for filterbank[i])
o fregs: (fcl,fc2,...,fcNs) [in numerically ascending order], where Ns=N-1
is the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ : filterbanki(3, (fc1,fc2)) : _,_,_

hoa.lib

Faust library for high order ambisonic. Its official prefix is ho.

132

(ho.)encoder

Ambisonic encoder. Encodes a signal in the circular harmonics domain depend-
ing on an order of decomposition and an angle.

Usage
encoder(n, x, a)
Where:

e n: the order
e x: the signal
e a: the angle

(ho.)decoder

Decodes an ambisonics sound field for a circular array of loudspeakers.

Usage

_ : decoder(n, p)

Where:

o n: the order
e p: the number of speakers

Note

Number of loudspeakers must be greater or equal to 2n+1. It’s preferable to
use 2n+2 loudspeakers.

133

(ho.)decoderStereo
Decodes an ambisonic sound field for stereophonic configuration. An “home

made” ambisonic decoder for stereophonic restitution (30° - 330°) : Sound field
lose energy around 180°. You should use inPhase optimization with ponctual

sources. #### Usage

_ : decoderStereo(n)
Where:

e n: the order

Optimization Functions

Functions to weight the circular harmonics signals depending to the ambisonics
optimization. It can be basic for no optimization, maxRe or inPhase.

(ho.)optimBasic

The basic optimization has no effect and should be used for a perfect circle of
loudspeakers with one listener at the perfect center loudspeakers array.

Usage
_ : optimBasic(n)
Where:

e n: the order

(ho.)optimMaxRe

The maxRe optimization optimize energy vector. It should be used for an
auditory confined in the center of the loudspeakers array.

134

Usage

_ : optimMaxRe(n)

Where:

e n: the order

(ho.)optimInPhase

The inPhase Optimization optimize energy vector and put all loudspeakers sig-
nals n phase. It should be used for an auditory.

Usage

13

optimInPhase(n) :

here:

n: the order

(ho.)wider

Can be used to wide the diffusion of a localized sound. The order depending
signals are weighted and appear in a logarithmic way to have linear changes.

Usage
_ : wider(n,w)
Where:

e n: the order
o w: the width value between 0 - 1

135

(ho.)map

It simulate the distance of the source by applying a gain on the signal and a
wider processing on the soundfield.

Usage
map(n, x, r, a)
Where:

n: the order
x: the signal

o r: the radius
a: the angle in radian

(ho.)rotate

Rotates the sound field.

Usage
_ : rotate(n, a) : _

Where:

e n: the order
o a: the angle in radian

interpolators.lib

A library to handle interpolation in Faust. Its official prefix is it.

(it.)interpolate_linear

Linear interpolation between 2 values

136

Usage
interpolate_linear(dv,vO0,v1)
Where:

e dv: in the fractional value in [0..1] range
e vO0: is the first value
e v1: is the second value

Reference:

https://github.com/jamoma/JamomaCore/blob/master /Foundation/library /
includes/TTInterpolate.h

(it.)interpolate_cosine

Cosine interpolation between 2 values
Usage
interpolate_cosine(dv,v0,v1l)
Where:

o dv: in the fractional value in [0..1] range
e vO0: is the first value
e vl: is the second value

Reference:

https://github.com/jamoma/JamomaCore/blob/master /Foundation/library/
includes/TTInterpolate.h

(it.)interpolate_cubic

Cubic interpolation between 4 values

137

https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h
https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h
https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h
https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h

Usage
interpolate_cubic(dv,v0,vl,v2,v3)
Where:

o dv: in the fractional value in [0..1] range
e vO0: is the first value

e v1: is the second value

e v2: is the third value

e v3: is the fourth value

Reference:

https://www.paulinternet.nl/?page=bicubic

(it.)interpolator_linear

Linear interpolator for a ‘gen’ circuit triggered by an ‘idv’ input to generate
values

Usage
interpolator_linear(gen, idv) : _,_... (equal to N = outputs(gen))
Where:

e gen: a circuit with an idv’ reader input that produces N outputs
e idv: a fractional read index expressed as a float value, or a (int,frac) pair
(see float.lib and double.lib)

(it.)interpolator_cosine

Cosine interpolator for a ‘gen’ circuit triggered by an ‘idv’ input to generate
values

138

https://www.paulinternet.nl/?page=bicubic

Usage

interpolator_cosine(gen, idv) : _,_... (equal to N = outputs(gen))

Where:

e gen: a circuit with an idv’ reader input that produces N outputs
e idv: a fractional read index expressed as a float value, or a (int,frac) pair
(see float.lib and double.lib)

(it.)interpolator_cubic

Cubic interpolator for a ‘gen’ circuit triggered by an ‘idv’ input to generate

values

Usage

interpolator_cubic(gen, idv) : _,_... (equal to N = outputs(gen))

Where:

e gen: a circuit with an idv’ reader input that produces N outputs
o idv: a fractional read index expressed as a float value, or a (int,frac) pair
(see float.lib and double.lib)

(it.)interpolator_select

Generic configurable interpolator (with selector between in [0..3]). The value 3
is used for no interpolation.

Usage

interpolator_select(gen, idv, sel) : _,_ ... (equal to N = outputs(gen))

Where:

139

e gen: a circuit with an idv’ reader input that produces N outputs

o idv: a fractional read index expressed as a float value, or a (int,frac) pair
(see float.lib and double.lib)

o sel: an interpolation algorithm selector in [0..3] (0 = linear, 1 = cosine,
2 = cubic, 3 = nointerp)

maths.lib

Mathematic library for Faust. Its official prefix is ma.

Functions Reference
(ma.)SR

Current sampling rate (between 1000Hz and 192000Hz). Constant during pro-
gram execution.

Usage

SR :

(ma.)BS

Current block-size. Can change during the execution.

Usage

BS :

(ma.)PI

Constant PI in double precision.

140

Usage

PI :

(ma.) INFINITY

Constant INFINITY inherited from math.h.

Usage

INFINITY : _

(ma.)FTZ

Flush to zero: force samples under the “maximum subnormal number” to be
zero. Usually not needed in C++ because the architecture file take care of this,
but can be useful in JavaScript for instance.

Usage
: ftz

See : http://docs.oracle.com/cd /E19957-01/806-3568 /ncg math.html

(ma.)neg

Invert the sign (-x) of a signal.

Usage

_ : neg : _

141

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html

(ma.)sub(x,y)

Subtract x and y.

(ma.)inv

Compute the inverse (1/x) of the input signal.

Usage

: inv

(ma.)cbrt

Computes the cube root of of the input signal.

Usage

_ : cbrt : _

(ma.)hypot

Computes the euclidian distance of the two input signals sqrt(xz+yy) without
undue overflow or underflow.

Usage

» : hypot : _

(ma.)ldexp

Takes two input signals: x and n, and multiplies x by 2 to the power n.

142

Usage

, : ldexp : _

(ma.)scalb

Takes two input signals: x and n, and multiplies x by 2 to the power n.

Usage

, : scalb : _

(ma.)loglp

Computes log(1 + x) without undue loss of accuracy when x is nearly zero.

Usage

_ : loglp : _

(ma.)logb

Return exponent of the input signal as a floating-point number.

Usage

_ : logb : _

(ma.)ilogb

Return exponent of the input signal as an integer number.

143

Usage

ilogb : _

(ma.)log2

Returns the base 2 logarithm of x.

Usage

_ : log2 : _

(ma.)expml

Return exponent of the input signal minus 1 with better precision.

Usage

_ : expml

(ma.)acosh

Computes the principle value of the inverse hyperbolic cosine of the input signal.

Usage

_ : acosh : _

(ma.)asinh

Computes the inverse hyperbolic sine of the input signal.

144

Usage

_ : asinh : _

(ma.)atanh

Computes the inverse hyperbolic tangent of the input signal.

Usage

_ ¢ atanh : _

(ma.)sinh

Computes the hyperbolic sine of the input signal.

Usage

_ ¢ sinh : _

(ma.)cosh

Computes the hyperbolic cosine of the input signal.

Usage

cosh : _

(ma.)tanh

Computes the hyperbolic tangent of the input signal.

145

Usage

_ ¢ tanh : _

(ma.)erf

Computes the error function of the input signal.

Usage

:erf :

(ma.)erfc

Computes the complementary error function of the input signal.

Usage

_ : erfc : _

(ma.)gamma

Computes the gamma function of the input signal.

Usage

! gamma : _

(ma.)lgamma

Calculates the natural logorithm of the absolute value of the gamma function
of the input signal.

146

Usage

_ : lgamma : _

(ma.)JO

Computes the Bessel function of the first kind of order 0 of the input signal.

Usage

: JO :

(ma.)J1

Computes the Bessel function of the first kind of order 1 of the input signal.

Usage

: J1 o

(ma.)Jn

Computes the Bessel function of the first kind of order n (first input signal) of
the second input signal.

Usage

147

(ma.)YO

Computes the linearly independent Bessel function of the second kind of order
0 of the input signal.

Usage

: YO :

(ma.)Y1

Computes the linearly independent Bessel function of the second kind of order
1 of the input signal.

Usage

: YO :

(ma.)Yn

Computes the linearly independent Bessel function of the second kind of order
n (first input signal) of the second input signal.

Usage

(ma.)fabs, (ma.)fmax, (ma.)fmin

Just for compatibility. ..

fabs = abs
fmax = max
fmin = min

148

(ma.)np2

Gives the next power of 2 of x.

Usage
np2(n)
Where:

e n: an integer

(ma.)frac

Gives the fractional part of n.

Usage
frac(n)
Where:

e n: a decimal number

(ma.)modulo

Modulus operation.

Usage
modulo (x,N)
Where:

e x: the numerator
e N: the denominator

149

(ma.)isnan

Return non-zero if x is a NaN.

Usage

isnan(x)
isnan : _

Where:

o x: signal to analyse

(ma.)isinf

Return non-zero if x is a positive or negative infinity.

Usage

isinf (x)
isinf

Where:

e x: signal to analyse

(ma.)chebychev

Chebychev transformation of order n.
Usage
chebychev (n)

Where:

e n: the order of the polynomial

150

Semantics

TOl(x) =1,

T[] (x) = x,

T[n] (x) = 2x*T[n-1] (x) - T[n-2] (%)
Reference

http://en.wikipedia.org/wiki/Chebyshev_ polynomial

(ma.)chebychevpoly

Linear combination of the first Chebyshev polynomials.

Usage

_ @ chebychevpoly((cO,cl,...,cn))

Where:

o cn: the different Chebychevs polynomials such that: chebychevpoly((c0,cl,...

= Sum of chebychev(i)*ci

Reference

http://www.csounds.com/manual /html/chebyshevpoly.html

(ma.)diffn

Negated first-order difference.

Usage

_ : diffn : _

151

cn))

http://en.wikipedia.org/wiki/Chebyshev_polynomial
http://www.csounds.com/manual/html/chebyshevpoly.html

(ma.)signum

The signum function signum(x) is defined as -1 for x<0, 0 for x==0, and 1 for
x>0.

Usage

_ : signum : _

(ma.)nextpow?2

The nextpow2(x) returns the lowest integer m such that 2"m >= x.
Usage

2 nextpow2(n)

Useful for allocating delay lines, e.g.,

delay (2 nextpow2(maxDelayNeeded), currentDelay);

misceffects.lib

This library contains a collection of audio effects. Its official prefix is ef.

Dynamic
(ef.)cubicnl

Cubic nonlinearity distortion. cubicnl is a standard Faust library.

152

Usage:

_ : cubicnl(drive,offset)
_ : cubicnl_nodc(drive,offset)

Where:

e drive: distortion amount, between 0 and 1

e offset: constant added before nonlinearity to give even harmonics. Note:
offset can introduce a nonzero mean - feed cubicnl output to dcblocker to
remove this.

References:

« https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_ Clipper.html
o https://ccrma.stanford.edu/~jos/pasp/Nonlinear_ Distortion.html

(ef.)gate_mono

Mono signal gate. gate_mono is a standard Faust function.

Usage
_ : gate_mono(thresh,att,hold,rel)
Where:

e thresh: dB level threshold above which gate opens (e.g., -60 dB)

e att: attack time = time constant (sec) for gate to open (e.g., 0.0001 s =
0.1 ms)

e hold: hold time = time (sec) gate stays open after signal level < thresh
(e.g., 0.1s)

e rel: release time = time constant (sec) for gate to close (e.g., 0.020 s =
20 ms)

References

o http://en.wikipedia.org/wiki/Noise__gate
o http://www.soundonsound.com/sos/apr01/articles/advanced.asp
o http://en.wikipedia.org/wiki/Gating_ (sound__engineering)

153

https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html
https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html
http://en.wikipedia.org/wiki/Noise_gate
http://www.soundonsound.com/sos/apr01/articles/advanced.asp
http://en.wikipedia.org/wiki/Gating_(sound_engineering)

(ef.)gate_stereo

Stereo signal gates. gate_stereo is a standard Faust function.

Usage
, : gate_stereo(thresh,att,hold,rel) : _,_
Where:

o thresh: dB level threshold above which gate opens (e.g., -60 dB)

o att: attack time = time constant (sec) for gate to open (e.g., 0.0001 s =
0.1 ms)

e hold: hold time = time (sec) gate stays open after signal level < thresh
(e.g., 0.1 s)

o rel: release time = time constant (sec) for gate to close (e.g., 0.020 s =
20 ms)

References

o http://en.wikipedia.org/wiki/Noise_ gate
o http://www.soundonsound.com/sos/apr01/articles/advanced.asp
e http://en.wikipedia.org/wiki/Gating_ (sound_ engineering)

Filtering
(ef.)speakerbp
Dirt-simple speaker simulator (overall bandpass eq with observed roll-offs above

and below the passband).

Low-frequency speaker model = +12 dB/octave slope breaking to flat near f1.
Implemented using two dc blockers in series.

High-frequency model = -24 dB/octave slope implemented using a fourth-order
Butterworth lowpass.

Example based on measured Celestion G12 (12" speaker):

speakerbp is a standard Faust function

154

http://en.wikipedia.org/wiki/Noise_gate
http://www.soundonsound.com/sos/apr01/articles/advanced.asp
http://en.wikipedia.org/wiki/Gating_(sound_engineering)

Usage

speakerbp(£f1,£2)
_ : speakerbp(130,5000)

(ef.)piano_dispersion_filter

Piano dispersion allpass filter in closed form.

Usage

piano_dispersion_filter(M,B,f0)
_ : piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay)

Where:

e M: number of first-order allpass sections (compile-time only) Keep below
20. 8 is typical for medium-sized piano strings.

e B: string inharmonicity coefficient (0.0001 is typical)

e f0: fundamental frequency in Hz

Outputs

e« MINUS the estimated delay at £0 of allpass chain in samples, provided in
negative form to facilitate subtraction from delay-line length.
e Output signal from allpass chain

Reference

e “Dispersion Modeling in Waveguide Piano Synthesis Using Tunable All-
pass Filters”, by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76
o http://www.dafx.ca/proceedings/papers/p_071.pdf (An erratum in Eq.
(7) is corrected in Dr. Rauhala’s encompassing dissertation (and below).)
o http://www.acoustics.hut.fi/research/asp/piano/

155

http://www.dafx.ca/proceedings/papers/p_071.pdf
http://www.acoustics.hut.fi/research/asp/piano/

(ef.)stereo_width

Stereo Width effect using the Blumlein Shuffler technique. stereo_width is a
standard Faust function.

Usage
, : stereo_width(w) : _,_
Where:

e w: stereo width between 0 and 1

At w=0, the output signal is mono ((left+right)/2 in both channels). At w=1,
there is no effect (original stereo image). Thus, w between 0 and 1 varies stereo
width from 0 to “original”.

Reference

e “Applications of Blumlein Shuffling to Stereo Microphone Techniques”
Michael A. Gerzon, JAES vol. 42, no. 6, June 1994

Meshes

(ef.)mesh_square

Square Rectangular Digital Waveguide Mesh.
Usage

bus (4%N) : mesh_square(N) : bus(4xN);
Where:

e N: number of nodes along each edge - a power of two (1,2,4,8,...)

Reference

https://ccrma.stanford.edu/~jos/pasp/Digital _ Waveguide Mesh.html

156

https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html

Signal Order In and Out

The mesh is constructed recursively using 2x2 embeddings. Thus, the top level
of mesh_square (M) is a block 2x2 mesh, where each block is a mesh(M/2). Let
these blocks be numbered 1,2,3,4 in the geometry NW,NE,SW SE, i.e.,as 12 3
4 Each block has four vector inputs and four vector outputs, where the length
of each vector is M/2. Label the input vectors as Ni,Ei,Wi,Si, i.e., as the inputs
from the North, East South, and West, and similarly for the outputs. Then, for
example, the upper left input block of M/2 signals is labeled 1Ni. Most of the
connections are internal, such as 1Eo -> 2Wi. The 8% (M/2) input signals are
grouped in the order 1Ni 2Ni 3Si 4Si 1Wi 3Wi 2Ei 4Ei and the output signals
are 1No 1Wo 2No 2Eo 3So 3Wo 4S50 4Eo or

In: 1No 1Wo 2No 2Eo 3So 3Wo 4So 4Eo
Out: 1Ni 2Ni 3Si 4Si 1Wi 3Wi 2Ei 4Ei

Thus, the inputs are grouped by direction N,S;W E; while the outputs are
grouped by block number 1,2,3,4, which can also be interpreted as directions
NW, NE, SW, SE. A simple program illustrating these orderings is process =
mesh_square(2) ;.

Example

Reflectively terminated mesh impulsed at one corner:

mesh_square_test(N,x) = mesh_square(N)~(busi(4#N,x)) // input to corner
with { busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,), +(x); };
process = 1-1’ : mesh_square_test(4); // all modes excited forever

In this simple example, the mesh edges are connected as follows:
1No -> 1Ni, 1Wo -> 2Ni, 2No -> 3Si, 2Eo -> 4Si,
3So -> 1Wi, 3Wo -> 3Wi, 4So -> 2Ei, 4Eo -> 4Fi

A routing matrix can be used to obtain other connection geometries.

(ef.)reverseEchoN(nChans,delay)

Reverse echo effect

157

Usage
_ @ ef.reverseEchoN(N,delay) : si.bus(N)
Where:

e ‘N‘: Number of channels desired (1 or more)

o delay: echo delay (integer power of 2)

Demo

: dm.reverseEchoN(N)

- - =

Description

The effect uses N instances of reverseDelayRamped at different phases.

(ef.)reverseDelayRamped(delay,phase)
Reverse delay with amplitude ramp

Usage

_ @ ef.reverseDelayRamped(delay,phase)
Where:

e delay: echo delay (integer power of 2)
e phase: float between 0 and 1 giving ramp delay phase*delay

Demo

: dm.reverseEchoN(N)

- -

158

(ef.)uniformPanToStereo (nChans)

Pan nChans channels to the stereo field, spread uniformly left to right

Usage

si.bus(N) : ef.uniformPanToStereo(N) : _,_

Where:

e N: Number of input channels to pan down to stereo

Demo

_ : dm.reverseEchoN(N) : _,_

Time Based
(ef.)echo

A simple echo effect.

echo is a standard Faust function

Usage

_ : echo(maxDuration,duration,feedback)

Where:

e« maxDuration: the max echo duration in seconds
e duration: the echo duration in seconds
o feedback: the feedback coeflicient

159

Pitch Shifting

(ef.)transpose

A simple pitch shifter based on 2 delay lines. transpose is a standard Faust
function.

Usage

_ @ transpose(w, x, s)

Where:

o w: the window length (samples)
o x: crossfade duration duration (samples)
o s: shift (semitones)

noises.lib

Faust Noise Generator Library. Its official prefix is no.

Functions Reference
(no.)noise

White noise generator (outputs random number between -1 and 1). Noise is a
standard Faust function.

Usage

noise : _

(no.)multirandom

Generates multiple decorrelated random numbers in parallel.

160

Usage
multirandom(n) : si.bus(n)
Where:

e n: the number of decorrelated random numbers in parallel

(no.)multinoise

Generates multiple decorrelated noises in parallel.
Usage

multinoise(n) : si.bus(n)

Where:

e n: the number of decorrelated random numbers in parallel

(no.)noises

TODO.

(no.)pink_noise

Pink noise (1/f noise) generator (third-order approximation) pink_noise is a
standard Faust function.

Usage

pink_noise : _;

161

Reference:

https://ccrma.stanford.edu/~jos/sasp/Example_ Synthesis_1_F_Noise.html

(no.)pink_noise_vm
Multi pink noise generator.
Usage

pink_noise_vm(N) : _;
Where:

o N: number of latched white-noise processes to sum, not to exceed sizeof(int)
in C++ (typically 32).

References

o http://www.dsprelated.com/showarticle/908.php
e http://www firstpr.com.au/dsp/pink-noise/# Voss-McCartney

(no.)1lfnoise, (no.)1lfnoise0 and (no.)lfnoiseN

Low-frequency noise generators (Butterworth-filtered downsampled white

noise).

Usage

1lfnoiseO(rate) : _; // new random number every int(SR/rate) samples or so
lfnoiseN(N,rate) : _; // same as "lfnoiseO(rate) : lowpass(N,rate)" [see filters.lib]
lfnoise(rate) : _; // same as "lfnoiseO(rate) : seq(i,5,lowpass(N,rate))" (no overshoot)

162

https://ccrma.stanford.edu/~jos/sasp/Example_Synthesis_1_F_Noise.html
http://www.dsprelated.com/showarticle/908.php
http://www.firstpr.com.au/dsp/pink-noise/#Voss-McCartney

Example

(view waveforms in faust2octave):

rate = SR/100.0; // new random value every 100 samples (SR from music.lib)

process = lfnoiseO(rate), // sampled/held noise (piecewise constant)
1fnoiseN(3,rate), // lfnoise0 smoothed by 3rd order Butterworth LPF
lfnoise(rate); // 1lfnoise0 smoothed with no overshoot

(no.)sparse_noise_vm

sparse noise generator.

Usage
sparse_noise(f0) : _;
Where:
e fO: average frequency of noise impulses per second

Random impulses in the amplitude range -1 to 1 are generated at an average
rate of f0 impulses per second.

Reference

¢ See velvet_ noise

(no.)velvet_noise_vm

velvet noise generator.

Usage
velvet_noise(amp,f0) : _;
Where:

o amp: amplitude of noise impulses (positive and negative)
e fO: average frequency of noise impulses per second

163

Reference

o Matti Karjalainen and Hanna Jarvelainen, “Reverberation Modeling Us-
ing Velvet Noise”, in Proc. 30th Int. Conf. Intelligent Audio Environ-
ments (AES07), March 2007.

(no.)gnoise

approximate zero-mean, unit-variance Gaussian white noise generator.
Usage

gnoise(N) : _;

Where:

e N: number of uniform random numbers added to approximate Gaussian
white noise

Reference

e See Central Limit Theorem

oscillators.lib

This library contains a collection of sound generators. Its official prefix is os.

Wave-Table-Based Oscillators

(os.)sinwaveform

Sine waveform ready to use with a rdtable.

164

Usage

sinwaveform(tablesize)

Where:

e tablesize: the table size

(os.)coswaveform

Cosine waveform ready to use with a rdtable.
Usage

coswaveform(tablesize)

Where:

e tablesize: the table size

(os.)phasor

A simple phasor to be used with a rdtable. phasor is a standard Faust function.
Usage
phasor(tablesize,freq)

Where:

e tablesize: the table size
o freq: the frequency of the phasor (Hz)

165

(os.)hs_phasor

Hardsyncing phasor to be used with an rdtable.

Usage
hs_phasor(tablesize,freq,c)
Where:

e tablesize: the table size

o freq: the frequency of the phasor (Hz)
e c: a clock signal, c>0 resets phase to 0

(os.)oscsin

Sine wave oscillator. oscsin is a standard Faust function.

Usage
oscsin(freq)
Where:

e freq: the frequency of the wave (Hz)

(os.)oscsinteensy

Sine wave oscillator. oscsinteensy was made for teensy, it’s based on oscsin
with a shorter tablesize.

Usage
oscsinteensy(freq)
Where:

o freq: the frequency of the wave (Hz)

166

(os.)hs_oscsin

Sin lookup table with hardsyncing phase.

Usage
hs_oscsin(freq,c)
Where:

e freq: the fundamental frequency of the phasor
o c: a clock signal, c>0 resets phase to 0

(os.)osccos

Cosine wave oscillator.

Usage
osccos (freq)
Where:

o freq: the frequency of the wave (Hz)

(os.)oscp

A sine wave generator with controllable phase.

Usage
oscp(freq,p)
Where:

e freq: the frequency of the wave (Hz)
e p: the phase in radian

167

(os.)osci

Interpolated phase sine wave oscillator.
Usage

osci(freq)

Where:

o freq: the frequency of the wave (Hz)

LFOs

Low-Frequency Oscillators (LFOs) have prefix 1f_ (no aliasing suppression,
which is not audible at LF).

(os.)1f_imptrain

Unit-amplitude low-frequency impulse train. 1f_imptrain is a standard Faust
function.

Usage
1f_imptrain(freq)
Where:

e freq: frequency in Hz

(os.)1f_pulsetrainpos

Unit-amplitude nonnegative LF pulse train, duty cycle between 0 and 1.

168

Usage
1f_pulsetrainpos(freq,duty)
Where:

e freq: frequency in Hz
e duty: duty cycle between 0 and 1

(os.)1f_pulsetrain

Unit-amplitude zero-mean LF pulse train, duty cycle between 0 and 1.
Usage
1f_pulsetrain(freq,duty)

Where:

o freq: frequency in Hz
e duty: duty cycle between 0 and 1

(0s.)1f_squarewavepos
Positive LF square wave in [0,1]
Usage

1f_squarewavepos (freq)
Where:

e freq: frequency in Hz

169

(os.)1f_squarewave

Zero-mean unit-amplitude LF square wave. 1f_squarewave is a standard Faust
function.

Usage
1f_squarewave (freq)
Where:

e freq: frequency in Hz

(os.)1f_trianglepos

Positive unit-amplitude LF positive triangle wave.

Usage
1f_trianglepos(freq)
Where:

e freq: frequency in Hz

(os.)1f_triangle

Positive unit-amplitude LF triangle wave 1f _triangle is a standard Faust func-
tion.

Usage
1f_triangle(freq)
Where:

e freq: frequency in Hz

170

Low Frequency Sawtooths

Sawtooth waveform oscillators for virtual analog synthesis et al. The ‘simple’
versions (1f_rawsaw, 1f_sawpos and sawl), are mere samplings of the ideal
continuous-time (“analog”) waveforms. While simple, the aliasing due to sam-
pling is quite audible. The differentiated polynomial waveform family (saw2,
sawN, and derived functions) do some extra processing to suppress aliasing (not
audible for very low fundamental frequencies). According to Lehtonen et al.
(JASA 2012), the aliasing of saw2 should be inaudible at fundamental frequen-
cies below 2 kHz or so, for a 44.1 kHz sampling rate and 60 dB SPL presentation
level; fundamentals 415 and below required no aliasing suppression (i.e., sawl
is ok).

(0s.)1f_rawsaw

Simple sawtooth waveform oscillator between 0 and period in samples.
Usage

1f_rawsaw(periodsamps)

Where:

e periodsamps: number of periods per samples

(os.)1f_sawpos_phase

Simple sawtooth waveform oscillator between 0 and 1 with phase control.
Usage

1f_sawpos_phase(freq,phase)

Where:

o freq: frequency
e phase: phase

171

(0s.)1f_sawpos

Simple sawtooth waveform oscillator between 0 and 1.
Usage

1f_sawpos (freq)

Where:

e freq: frequency

(0s.)1f_saw

Simple sawtooth waveform. 1f_saw is a standard Faust function.
Usage

1f_saw(freq)

Where:

e freq: frequency

Bandlimited Sawtooth

//————(o0s.)sawN——— Bandlimited Sawtooth

sawN(N,freq), sawNp, saw2dpw (freq), saw2(freq), saw3(freq), saw4 (freq),
sawb(freq), saw6(freq), sawtooth(freq), saw2f2(freq) saw2f4(freq)

Method 1 (saw2)

Polynomial Transition Regions (PTR) (for aliasing suppression).

172

References

¢ Kleimola, J.; Valimaki, V., “Reducing Aliasing from Synthetic Audio Sig-
nals Using Polynomial Transition Regions,” in Signal Processing Letters,
IEEE | vol.19, no.2, pp.67-70, Feb. 2012

o https://aaltodoc.aalto.fi/bitstream/handle/123456789/ 7747 /publication6.

pdf?sequence=9

o http://research.spa.aalto.fi/publications/papers/spl-ptr/

Method 2 (sawN)

Differentiated Polynomial Waves (DPW) (for aliasing suppression).

Reference

“Alias-Suppressed Oscillators based on Differentiated Polynomial Waveforms”,
Vesa Valimaki, Juhan Nam, Julius Smith, and Jonathan Abel, IEEE Tr. Acous-
tics, Speech, and Language Processing (IEEE-ASLP), Vol. 18, no. 5, May 2010.

Other Cases

Correction-filtered versions of saw2: saw2f2, saw2f4 The correction filter com-
pensates “droop” near half the sampling rate. See reference for sawN.

Usage

sawN(N,freq)

sawNp (N, freq,phase)

saw2dpw (freq)

saw2(freq)

saw3(freq) : _ // based on sawN
saw4(freq) : _ // based on sawlN
sawb(freq) : _ // based on sawlN
saw6(freq) : _ // based on sawlN
sawtooth(freq) : _ // = saw2
saw2f2(freq)

saw2f4 (freq)

Where:

e N: polynomial order
e freq: frequency in Hz
e phase: phase

173

https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747/publication6.pdf?sequence=9
https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747/publication6.pdf?sequence=9
http://research.spa.aalto.fi/publications/papers/spl-ptr/

(os.)sawNp

TODO: MarkDown doc in comments

(os.)saw2dpw

TODO: MarkDown doc in comments

(os.)saw3

TODO: MarkDown doc in comments

(os.)sawtooth

Alias-free sawtooth wave. 2nd order interpolation (based on saw2). sawtooth
is a standard Faust function.

Usage
sawtooth(freq)
Where:

o freq: frequency

(os.)saw2f2

TODO: MarkDown doc in comments

174

(os.)saw2f4

TODO: MarkDown doc in comments

Bandlimited Pulse, Square, and Impulse Trains

Bandlimited Pulse, Square, and Impulse Trains.

pulsetrainNl, pulsetrain, squareN, square, imptrain, imptrainN, triangle,
triangleN

All are zero-mean and meant to oscillate in the audio frequency range. Use
simpler sample-rounded 1f_* versions above for LFOs.

Usage

pulsetrainN(N,freq,duty)

pulsetrain(freq, duty) : _ // = pulsetrainN(2)
squareN(N, freq)

square : _ // = squareN(2)

imptrainN(N,freq)

imptrain : _ // = imptrainN(2)
triangleN(N,freq)

triangle : _ // = triangleN(2)

Where:

e N: polynomial order
e freq: frequency in Hz

(os.)pulsetrainN

TODO: MarkDown doc in comments

(os.)pulsetrain

Bandlimited pulse train oscillator. Based on pulsetrainN(2). pulsetrain is
a standard Faust function.

175

Usage
pulsetrain(freq, duty)
Where:

e freq: frequency
o duty: duty cycle between 0 and 1

(os.)squareN

TODO: MarkDown doc in comments

(os.)square

Bandlimited square wave oscillator. Based on squareN(2). square is a standard
Faust function.

Usage
square (freq)
Where:

e freq: frequency

(os.)impulse

One-time impulse generated when the Faust process is started. impulse is a
standard Faust function.

Usage

impulse : _

176

(os.)imptrainN

TODO: MarkDown doc in comments

(os.)imptrain

Bandlimited impulse train generator. Based on imptrainN(2). imptrain is a
standard Faust function.

Usage
imptrain(freq)
Where:

o freq: frequency

(os.)triangleN

TODO: MarkDown doc in comments

(os.)triangle

Bandlimited triangle wave oscillator. Based on triangleN(2). triangle is a
standard Faust function.

Usage
triangle(freq)
Where:

o freq: frequency

177

Filter-Based Oscillators
Filter-Based Oscillators
Usage

osclblrlrslrcls|w] (f), where f = frequency in Hz.

References

« http://lac.linuxaudio.org/2012/download/lac12-slides-jos.pdf
 https://ccrma.stanford.edu/~jos/pdf/lac12-paper-jos.pdf

(os.)oscb

Sinusoidal oscillator based on the biquad.
Usage

oscb(freq)

Where:

e freq: frequency

(os.)oscrq

Sinusoidal (sine and cosine) oscillator based on 2D vector rotation, = undamped
“coupled-form” resonator = lossless 2nd-order normalized ladder filter.

Usage
oscrq(freq) : _,_
Where:

e freq: frequency

178

http://lac.linuxaudio.org/2012/download/lac12-slides-jos.pdf
https://ccrma.stanford.edu/~jos/pdf/lac12-paper-jos.pdf

Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized Scattering Junctions.
html

(os.)oscrs

Sinusoidal (sine) oscillator based on 2D vector rotation, = undamped “coupled-
form” resonator = lossless 2nd-order normalized ladder filter.

Usage
oscrs(freq)
Where:

e freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_ Junctions.
html

(os.)oscrc

Sinusoidal (cosine) oscillator based on 2D vector rotation, = undamped
“coupled-form” resonator = lossless 2nd-order normalized ladder filter.

Usage
oscrc(freq)
Where:

o freq: frequency

179

https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html

Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized Scattering Junctions.
html

(os.)oscs

Sinusoidal oscillator based on the state variable filter = undamped “modified-
coupled-form” resonator = “magic circle” algorithm used in graphics.

(os.)osc

Default sine wave oscillator (same as oscsin). osc is a standard Faust function.
Usage

osc(freq)

Where:

o freq: the frequency of the wave (Hz)

Waveguide-Resonator-Based Oscillators

Sinusoidal oscillator based on the waveguide resonator wgr.

(os.)oscw

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine oscillator.

180

https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html

Usage
oscwc(freq)
Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.
html

(os.)oscws

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude sine
oscillator.

Usage
oscws (freq)

Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.
html

(os.)oscwq

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine and sine (quadrature) oscillator.

181

https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html

Usage
oscwq(freq)
Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.
html

(os.)oscw

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine oscillator (default).

Usage
oscw(freq)
Where:

o freq: frequency

Reference

o https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.
html

Casio CZ Oscillators

Oscillators that mimics some of the Casio CZ oscillators.

182

https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html

(os.)CZsaw

Oscillator that mimics the Casio CZ saw oscillator CZsaw is a standard Faust

function.

Usage
CZsaw(fund,index)

Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = saw-wave

(o0s.)CZsquare

Oscillator that mimics the Casio CZ square oscillator CZsquare is a standard
Faust function.

Usage
CZsquare (fund, index)
Where:
o fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to

e index: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = square-

wave

(os.)CZpulse

Oscillator that mimics the Casio CZ pulse oscillator CZpulse is a standard Faust

function.

183

Usage
CZpulse(fund, index)

Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 gives a sine-wave, 1 is closer to

a pulse

(os.)CZsinePulse

Oscillator that mimics the Casio CZ sine/pulse oscillator CZsinePulse is a
standard Faust function.

Usage
CZsinePulse(fund, index)

Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 gives a sine-wave, 1 is a sine

minus a pulse

(0s.)CZhalfSine

Oscillator that mimics the Casio CZ half sine oscillator CZhalfSine is a standard
Faust function.

Usage

CZhalfSine(fund, index)

Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
o index: the brightness of the oscillator, 0 gives a sine-wave, 1 is somewhere
between a saw and a square

184

(os.)CZresSaw

Oscillator that mimics the Casio CZ resonant saw-tooth oscillator CZresSaw is
a standard Faust function.

Usage
CZresSaw (fund,res)

Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e res: the frequency of resonance as a factor of the fundamental pitch.

(os.)CZresTriangle

Oscillator that mimics the Casio CZ resonant triangle oscillator CZresTriangle
is a standard Faust function.

Usage
CZresTriangle(fund,res)

Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e res: the frequency of resonance as a factor of the fundamental pitch.

(os.)CZresTrap

Oscillator that mimics the Casio CZ resonant trapeze oscillator CZresTrap is a
standard Faust function.

185

Usage
CZresTrap(fund,res)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e res: the frequency of resonance as a factor of the fundamental pitch.

Filter-Based Oscillators
(os.)quadosc

Sinusoidal oscillator based on QuadOsc by Martin Vicanek

Usage
quadosc (freq)
where

e freq: frequency in Hz

Reference

o https://vicanek.de/articles/QuadOsc.pdf

phaflangers.lib
A library of phasor and flanger effects. Its official prefix is pf.
Functions Reference

(pf.)flanger_mono

Mono flanging effect.

186

https://vicanek.de/articles/QuadOsc.pdf

Usage:
_ @ flanger_mono(dmax,curdel,depth,fb,invert) : _;
Where:

e dmax: maximum delay-line length (power of 2) - 10 ms typical
e curdel: current dynamic delay (not to exceed dmax)

o depth: effect strength between 0 and 1 (1 typical)

o fb: feedback gain between 0 and 1 (0 typical)

e invert: 0 for normal, 1 to invert sign of flanging sum

Reference

https://ccrma.stanford.edu/~jos/pasp/Flanging.html

(pf.)flanger_stereo

Stereo flanging effect. flanger_stereo is a standard Faust function.

Usage:
, ¢ flanger_stereo(dmax,curdell,curdel2,depth,fb,invert) : _,_;
Where:

¢ dmax: maximum delay-line length (power of 2) - 10 ms typical
o curdel: current dynamic delay (not to exceed dmax)

e depth: effect strength between 0 and 1 (1 typical)

o fb: feedback gain between 0 and 1 (0 typical)

e invert: 0 for normal, 1 to invert sign of flanging sum

Reference

https://ccrma.stanford.edu/~jos/pasp/Flanging.html

(pf.)phaser2_mono

Mono phasing effect.

187

https://ccrma.stanford.edu/~jos/pasp/Flanging.html
https://ccrma.stanford.edu/~jos/pasp/Flanging.html

Phaser
_ : phaser2_mono(Notches,phase,width,frqmin,fratio,frqmax,speed,depth,fb,invert)
Where:

o Notches: number of spectral notches (MACRO ARGUMENT - not a
signal)

o phase: phase of the oscillator (0-1)

e width: approximate width of spectral notches in Hz

e frgmin: approximate minimum frequency of first spectral notch in Hz

e fratio: ratio of adjacent notch frequencies

o frgmax: approximate maximum frequency of first spectral notch in Hz

e speed: LFO frequency in Hz (rate of periodic notch sweep cycles)

o depth: effect strength between 0 and 1 (1 typical) (aka “intensity”) when
depth=2, “vibrato mode” is obtained (pure allpass chain)

o fb: feedback gain between -1 and 1 (0 typical)

e invert: 0 for normal, 1 to invert sign of flanging sum

Reference:

¢ https://ccrma.stanford.edu/~jos/pasp/Phasing.html

o http://www.geofex.com/Article_ Folders/phasers/phase.html

e ‘An Allpass Approach to Digital Phasing and Flanging’, Julius O. Smith
ITI, Proc. Int. Computer Music Conf. (ICMC-84), pp. 103-109, Paris,
1984.

e CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/
STANM/stanms/stanm?21/

(pf.)phaser2_stereo

Stereo phasing effect. phaser2_stereo is a standard Faust function.

Phaser

_ : phaser2_stereo(Notches,phase,width,frgmin,fratio,frqmax,speed,depth,fb,invert)
Where:

o Notches: number of spectral notches (MACRO ARGUMENT - not a
signal)

188

https://ccrma.stanford.edu/~jos/pasp/Phasing.html
http://www.geofex.com/Article_Folders/phasers/phase.html
https://ccrma.stanford.edu/STANM/stanms/stanm21/
https://ccrma.stanford.edu/STANM/stanms/stanm21/

o phase: phase of the oscillator (0-1)

e width: approximate width of spectral notches in Hz

e frgmin: approximate minimum frequency of first spectral notch in Hz

e fratio: ratio of adjacent notch frequencies

e frgmax: approximate maximum frequency of first spectral notch in Hz

o speed: LFO frequency in Hz (rate of periodic notch sweep cycles)

o depth: effect strength between 0 and 1 (1 typical) (aka “intensity”) when
depth=2, “vibrato mode” is obtained (pure allpass chain)

o fb: feedback gain between -1 and 1 (0 typical)

e invert: 0 for normal, 1 to invert sign of flanging sum

Reference:

o https://ccrma.stanford.edu/~jos/pasp/Phasing.html

o http://www.geofex.com/Article_ Folders/phasers/phase.html

e ‘An Allpass Approach to Digital Phasing and Flanging’, Julius O. Smith
ITI, Proc. Int. Computer Music Conf. (ICMC-84), pp. 103-109, Paris,
1984.

o CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/
STANM/stanms/stanm21/

physmodels.lib

Faust physical modeling library; Its official prefix is pm.

This library provides an environment to facilitate physical modeling of musical
instruments. It contains dozens of functions implementing low and high level
elements going from a simple waveguide to fully operational models with built-in
Ul, etc.

It is organized as follows:

« Global Variables: Useful pre-defined variables for physical modeling (e.g.,
speed of sound, etc.).

o Conversion Tools: Conversion functions specific to physical modeling (e.g.,
length to frequency, etc.).

o Bidirectional Utilities: Functions to create bidirectional block diagrams
for physical modeling.

o Basic Elements: waveguides, specific types of filters, etc.

e String Instruments: various types of strings (e.g., steel, nylon, etc.),
bridges, guitars, etc.

e Bowed String Instruments: parts and models specific to bowed string
instruments (e.g., bows, bridges, violins, etc.).

189

https://ccrma.stanford.edu/~jos/pasp/Phasing.html
http://www.geofex.com/Article_Folders/phasers/phase.html
https://ccrma.stanford.edu/STANM/stanms/stanm21/
https://ccrma.stanford.edu/STANM/stanms/stanm21/

e Wind Instrument: parts and models specific to wind string instruments
(e.g., reeds, mouthpieces, flutes, clarinets, etc.).

o Exciters: pluck generators, “blowers”, etc.

e Modal Percussions: percussion instruments based on modal models.

o Vocal Synthesis: functions for various vocal synthesis techniques (e.g., fof,
source/filter, etc.) and vocal synthesizers.

e Misc Functions: any other functions that don’t fit in the previous category
(e.g., nonlinear filters, etc.).

This library is part of the Faust Physical Modeling ToolKit. More information
on how to use this library can be found on this page: https://ccrma.stanford.
edu/~rmichon/pmFaust. Tutorials on how to make physical models of musical
instruments using Faust can be found here as well.

Global Variables

Useful pre-defined variables for physical modeling.

(pm.) speed0fSound

Speed of sound in meters per second (340m/s).

(pm.)maxLength

The default maximum length (3) in meters of strings and tubes used in this
library. This variable should be overriden to allow longer strings or tubes.

Conversion Tools

Useful conversion tools for physical modeling.

(pm.)f21

Frequency to length in meters.

190

https://ccrma.stanford.edu/~rmichon/pmFaust
https://ccrma.stanford.edu/~rmichon/pmFaust
https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-physical-models-of-musical-instruments-with-faust

Usage
£21(freq) : distancelnMeters
Where:

e freq: the frequency

(pm.)12f

Length in meters to frequency.
Usage

12f (length) : freq

Where:

o length: length/distance in meters

(pm.)12s

Length in meters to number of samples.
Usage

12s(1) : numberOfSamples

Where:

o 1: length in meters

191

Bidirectional Utilities

Set of fundamental functions to create bi-directional block diagrams in Faust.
These elements are used as the basis of this library to connect high level elements
(e.g., mouthpieces, strings, bridge, instrument body, etc.). Each block has 3
inputs and 3 outputs. The first input/output carry left going waves, the second
input/output carry right going waves, and the third input/output is used to
carry any potential output signal to the end of the algorithm.

(pm.)basicBlock

Empty bidirectional block to be used with chain: 3 signals ins and 3 signals
out.

Usage

chain(basicBlock : basicBlock : etc.)

(pm.)chain

Creates a chain of bidirectional blocks. Blocks must have 3 inputs and outputs.
The first input/output carry left going waves, the second input/output carry
right going waves, and the third input/output is used to carry any potential
output signal to the end of the algorithm. The implied one sample delay created
by the ~ operator is generalized to the left and right going waves. Thus, n blocks
in chain() will add an n samples delay to both left and right going waves.

Usage

leftGoingWaves,rightGoingWaves,mixedOutput : chain(A : B) : leftGoingWaves,rightGoingWave:s
with{
A s

B=_,_,_;

};

(pm.)inLeftWave

Adds a signal to left going waves anywhere in a chain of blocks.

192

Usage
model(x) = chain(A : inLeftWave(x) : B)

Where A and B are bidirectional blocks and x is the signal added to left going
waves in that chain.

(pm.)inRightWave

Adds a signal to right going waves anywhere in a chain of blocks.
Usage

model(x) = chain(A : inRightWave(x) : B)

Where A and B are bidirectional blocks and x is the signal added to right going
waves in that chain.

(pm.)in

Adds a signal to left and right going waves anywhere in a chain of blocks.
Usage

model(x) = chain(A : in(x) : B)

Where A and B are bidirectional blocks and x is the signal added to left and
right going waves in that chain.

(pm.)outLeftWave

Sends the signal of left going waves to the output channel of the chain.

193

Usage

chain(A : outLeftWave : B)

Where A and B are bidirectional blocks.

(pm.)outRightWave

Sends the signal of right going waves to the output channel of the chain.
Usage

chain(A : outRightWave : B)

Where A and B are bidirectional blocks.

(pm.)out

Sends the signal of right and left going waves to the output channel of the chain.
Usage

chain(A : out : B)

Where A and B are bidirectional blocks.

(pm.)terminations

Creates terminations on both sides of a chain without closing the inputs and
outputs of the bidirectional signals chain. As for chain, this function adds a 1
sample delay to the bidirectional signal, both ways. Of courses, this function
can be nested within a chain.

194

Usage

terminations(a,b,c)

with{
a = *(-1); // left termination
b = chain(D : E : F); // bidirectional chain of blocks (D, E, F, etc.)
¢ = *(-1); // right termination

};

(pm.)1Termination

Creates a termination on the left side of a chain without closing the inputs and
outputs of the bidirectional signals chain. This function adds a 1 sample delay
near the termination and can be nested within another chain.

Usage

1Terminations(a,b)

with{
a
b

*(-1); // left termination
chain(D : E : F); // bidirectional chain of blocks (D, E, F, etc.)

};

(pm.)rTermination
Creates a termination on the right side of a chain without closing the inputs

and outputs of the bidirectional signals chain. This function adds a 1 sample
delay near the termination and can be nested within another chain.

Usage

rTerminations(b,c)
with{

chain(D : E : F); // bidirectional chain of blocks (D, E, F, etc.)
= x(-1); // right termination

[elen
|

};

195

(pm.)closelns

Closes the inputs of a bidirectional chain in all directions.

Usage

closeIns : chain(...) : _,_,_

(pm.)closeOuts

Closes the outputs of a bidirectional chain in all directions except for the main
signal output (3d output).

Usage

,,_ : chain(...)

(pm.)endChain

Closes the inputs and outputs of a bidirectional chain in all directions except
for the main signal output (3d output).

Usage

endChain(chain(...))

Basic Elements

Basic elements for physical modeling (e.g., waveguides, specific filters, etc.).

(pm.)waveguideN

A series of waveguide functions based on various types of delays (see fdelay [n]).

196

List of functions

e waveguideUd: unit delay waveguide

e waveguideFd: fractional delay waveguide

e waveguideFd2: second order fractional delay waveguide
o waveguideFd4: fourth order fractional delay waveguide

Usage
chain(A : waveguideUd(nMax,n) : B)
Where:

e nMax: the maximum length of the delays in the waveguide
e n: the length of the delay lines in samples.

(pm.)waveguide

Standard pm.1ib waveguide (based on waveguideFd4).
Usage

chain(A : waveguide(nMax,n) : B)

Where:

e nMax: the maximum length of the delays in the waveguide
e n: the length of the delay lines in samples.

(pm.)bridgeFilter

Generic two zeros bridge FIR filter (as implemented in the STK) that can be
used to implement the reflectance violin, guitar, etc. bridges.

197

https://ccrma.stanford.edu/software/stk/

Usage
_ : bridge(brightness,absorption)
Where:

o brightness: controls the damping of high frequencies (0-1)
e absorption: controls the absorption of the brige and thus the t60 of the
string plugged to it (0-1) (1 = 20 seconds)

(pm.)modeFilter

Resonant bandpass filter that can be used to implement a single resonance
(mode).

Usage
_ : modeFilter(freq,t60,gain)
Where:

e freq: mode frequency
o t60: mode resonance duration (in seconds)
o gain: mode gain (0-1)

String Instruments

Low and high level string instruments parts. Most of the elements in this section
can be used in a bidirectional chain.

(pm.)stringSegment

A string segment without terminations (just a simple waveguide).

198

Usage
chain(A : stringSegment (maxLength,length) : B)
Where:

o maxLength: the maximum length of the string in meters (should be static)
o length: the length of the string in meters

(pm.)openString
A bidirectional block implementing a basic “generic” string with a selectable

excitation position. Lowpass filters are built-in and allow to simulate the effect
of dispersion on the sound and thus to change the “stiffness” of the string.

Usage

chain(... : openString(length,stiffness,pluckPosition,excitation)

Where:

e length: the length of the string in meters

o stiffness: the stiffness of the string (0-1) (1 for max stiffness)
o pluckPosition: excitation position (0-1) (1 is bottom)

e excitation: the excitation signal

(pm.)nylonString

A bidirectional block implementing a basic nylon string with selectable exci-
tation position. This element is based on openString and has a fix stiffness
corresponding to that of a nylon string.

199

Usage

chain(... : nylonString(length,pluckPosition,excitation) : ...)

Where:

o length: the length of the string in meters
e pluckPosition: excitation position (0-1) (1 is bottom)
e excitation: the excitation signal

(pm.)steelString
A bidirectional block implementing a basic steel string with selectable exci-

tation position. This element is based on openString and has a fix stiffness
corresponding to that of a steel string.

Usage

chain(... : steelString(length,pluckPosition,excitation) : ...)

Where:

e length: the length of the string in meters
o pluckPosition: excitation position (0-1) (1 is bottom)
e excitation: the excitation signal

(pm.)openStringPick
A bidirectional block implementing a “generic” string with selectable excitation

position. It also has a built-in pickup whose position is the same as the excitation
position. Thus, moving the excitation position will also move the pickup.

200

Usage
chain(... : openStringPick(length,stiffness,pluckPosition,excitation)
Where:

o length: the length of the string in meters

e stiffness: the stiffness of the string (0-1) (1 for max stiffness)
o pluckPosition: excitation position (0-1) (1 is bottom)

e excitation: the excitation signal

(pm.)openStringPickUp

A bidirectional block implementing a “generic” string with selectable excitation
position and stiffness. It also has a built-in pickup whose position can be inde-
pendenly selected. The only constraint is that the pickup has to be placed after
the excitation position.

Usage
chain(... : openStringPickUp(length,stiffness,pluckPosition,excitation)
Where:

o length: the length of the string in meters

o stiffness: the stiffness of the string (0-1) (1 for max stiffness)

e pluckPosition: pluck position between the top of the string and the
pickup (0-1) (1 for same as pickup position)

o pickupPosition: position of the pickup on the string (0-1) (1 is bottom)

e excitation: the excitation signal

(pm.)openStringPickDown

A bidirectional block implementing a “generic” string with selectable excitation
position and stiffness. It also has a built-in pickup whose position can be in-
dependenly selected. The only constraint is that the pickup has to be placed
before the excitation position.

201

Usage
chain(... : openStringPickDown(length,stiffness,pluckPosition,excitation)
Where:

e length: the length of the string in meters

o stiffness: the stiffness of the string (0-1) (1 for max stiffness)

o pluckPosition: pluck position on the string (0-1) (1 is bottom)

e pickupPosition: position of the pickup between the top of the string and
the excitation position (0-1) (1 is excitation position)

e excitation: the excitation signal

(pm.)ksReflexionFilter

The “typical” one-zero Karplus-strong feedforward reflexion filter. This filter
will be typically used in a termination (see below).

Usage

terminations(_,chain(...) ,ksReflexionFilter)

(pm.)rStringRigidTermination

Bidirectional block implementing a right rigid string termination (no damping,
just phase inversion).

Usage

chain(rStringRigidTermination : stringSegment : ...)

(pm.)1StringRigidTermination

Bidirectional block implementing a left rigid string termination (no damping,
just phase inversion).

202

Usage

chain(... : stringSegment : 1StringRigidTermination)

(pm.)elecGuitarBridge
Bidirectional block implementing a simple electric guitar bridge. This block is
based on bridgeFilter. The bridge doesn’t implement transmittance since it

is not meant to be connected to a body (unlike acoustic guitar). It also partially
sets the resonance duration of the string with the nuts used on the other side.

Usage

chain(... : stringSegment : elecGuitarBridge)

(pm.)elecGuitarNuts
Bidirectional block implementing a simple electric guitar nuts. This
block is based on bridgeFilter and does essentially the same thing as

elecGuitarBridge, but on the other side of the chain. It also partially sets
the resonance duration of the string with the bridge used on the other side.

Usage

chain(elecGuitarNuts : stringSegment : ...)

(pm.)guitarBridge

Bidirectional block implementing a simple acoustic guitar bridge. This bridge
damps more hight frequencies than elecGuitarBridge and implements a trans-
mittance filter. It also partially sets the resonance duration of the string with
the nuts used on the other side.

203

Usage

chain(... : stringSegment : guitarBridge)

(pm.)guitarNuts
Bidirectional block implementing a simple acoustic guitar nuts. This nuts damps
more hight frequencies than elecGuitarNuts and implements a transmittance

filter. It also partially sets the resonance duration of the string with the bridge
used on the other side.

Usage

chain(guitarNuts : stringSegment : ...)

(pm.)idealString
An “ideal” string with rigid terminations and where the plucking position and

the pick-up position are the same. Since terminations are rigid, this string will
ring forever.

Usage
1-1’ : idealString(length,reflexion,xPosition,excitation)

With: * length: the length of the string in meters * pluckPosition: the pluck-
ing position (0.001-0.999) * excitation: the input signal for the excitation.

(pm.)ks

A Karplus-Strong string (in that case, the string is implemented as a one di-
mension waveguide).

204

Usage
ks(length,damping,excitation)
Where:
o length: the length of the string in meters

o damping: string damping (0-1)
e excitation: excitation signal

(pm.)ks_ui_MIDI

Ready-to-use, MIDI-enabled Karplus-Strong string with buil-in UI.

Usage

ks_ui_MIDI : _

(pm.)elecGuitarModel

A simple electric guitar model (without audio effects, of course) with selectable
pluck position. This model implements a single string. Additional strings should
be created by making a polyphonic applications out of this function. Pitch is
changed by changing the length of the string and not through a finger model.

Usage
elecGuitarModel (length,pluckPosition,mute,excitation)
Where:

o length: the length of the string in meters

o pluckPosition: pluck position (0-1) (1 is on the bridge)

o mute: mute coefficient (1 for no mute and 0 for instant mute)
e excitation: excitation signal

205

(pm.)elecGuitar

A simple electric guitar model with steel strings (based on elecGuitarModel)
implementing an excitation model. This model implements a single string. Ad-
ditional strings should be created by making a polyphonic applications out of
this function.

Usage
elecGuitar(length,pluckPosition,trigger)
Where:

e length: the length of the string in meters

o pluckPosition: pluck position (0-1) (1 is on the bridge)

o mute: mute coefficient (1 for no mute and 0 for instant mute)
e gain: gain of the pluck (0-1)

o trigger: trigger signal (1 for on, 0 for off)

(pm.)elecGuitar_ui_MIDI

Ready-to-use MIDI-enabled electric guitar physical model with built-in UL

Usage

elecGuitar_ui_MIDI : _

(pm.)guitarBody

WARNING: not implemented yet! Bidirectional block implementing a simple
acoustic guitar body.

Usage

chain(... : guitarBody)

206

(pm.)guitarModel

A simple acoustic guitar model with steel strings and selectable excitation po-
sition. This model implements a single string. Additional strings should be
created by making a polyphonic applications out of this function. Pitch is
changed by changing the length of the string and not through a finger model.
WARNING: this function doesn’t currently implement a body (just strings and
bridge).

Usage
guitarModel (length,pluckPosition,excitation)
Where:

e length: the length of the string in meters
o pluckPosition: pluck position (0-1) (1 is on the bridge)
e excitation: excitation signal

(pm.)guitar

A simple acoustic guitar model with steel strings (based on guitarModel) im-
plementing an excitation model. This model implements a single string. Addi-
tional strings should be created by making a polyphonic applications out of this
function.

Usage
guitar(length,pluckPosition,trigger)
Where:

length: the length of the string in meters

o pluckPosition: pluck position (0-1) (1 is on the bridge)
e gain: gain of the excitation

o trigger: trigger signal (1 for on, 0 for off)

207

(pm.)guitar_ui_MIDI

Ready-to-use MIDI-enabled steel strings acoustic guitar physical model with
built-in UI.

Usage

guitar_ui_MIDI : _

(pm.)nylonGuitarModel

A simple acoustic guitar model with nylon strings and selectable excitation
position. This model implements a single string. Additional strings should
be created by making a polyphonic applications out of this function. Pitch is
changed by changing the length of the string and not through a finger model.
WARNING: this function doesn’t currently implement a body (just strings and
bridge).

Usage
nylonGuitarModel(length,pluckPosition,excitation)
Where:

o length: the length of the string in meters
o pluckPosition: pluck position (0-1) (1 is on the bridge)
e excitation: excitation signal

(pm.)nylonGuitar

A simple acoustic guitar model with steel strings (based on nylonGuitarModel)
implementing an excitation model. This model implements a single string. Ad-
ditional strings should be created by making a polyphonic applications out of
this function.

208

Usage
nylonGuitar(length,pluckPosition,trigger)
Where:
e length: the length of the string in meters
o pluckPosition: pluck position (0-1) (1 is on the bridge)

o gain: gain of the excitation (0-1)
e trigger: trigger signal (1 for on, 0 for off)

(pm.)nylonGuitar_ui_MIDI

Ready-to-use MIDI-enabled nylon strings acoustic guitar physical model with
built-in UL

Usage

nylonGuitar_ui_MIDI : _

(pm.)modeInterpRes

Modular string instrument resonator based on IR measurements made on 3D
printed models. The 2D space allowing for the control of the shape and the
scale of the model is enabled by interpolating between modes parameters. More
information about this technique/project can be found here: https://ccrma.
stanford.edu/~rmichon/3dPrintingModeling/.

Usage

_ : modeInterpRes(nModes,x,y)

Where:

o nModes: number of modeled modes (40 max)

o x: shape of the resonator (0: square, 1: square with rounded corners, 2:
round)

o y: scale of the resonator (0: small, 1: medium, 2: large)

209

https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/

(pm.)modularInterpBody

Bidirectional block implementing a modular string instrument resonator (see

modeInterpRes).

Usage

chain(... : modularInterpBody(nModes,shape,scale) : ...)
Where:

o nModes: number of modeled modes (40 max)

« shape: shape of the resonator (0: square, 1: square with rounded corners,
2: round)

o scale: scale of the resonator (0: small, 1: medium, 2: large)

(pm.)modularInterpStringModel

String instrument model with a modular body (see modeInterpRes and https:
//ccrma.stanford.edu/~rmichon/3dPrintingModeling/).

Usage
modularInterpStringModel (length,pluckPosition,shape,scale,bodyExcitation,stringExcitation)
Where:

e stringlength: the length of the string in meters

e pluckPosition: pluck position (0-1) (1 is on the bridge)

« shape: shape of the resonator (0: square, 1: square with rounded corners,
2: round)

o scale: scale of the resonator (0: small, 1: medium, 2: large)

e bodyExcitation: excitation signal for the body

e stringExcitation: excitation signal for the string

(pm.)modularInterpInstr

String instrument with a modular body (see modeInterpRes and https://ccrma.
stanford.edu/~rmichon/3dPrintingModeling/).

210

https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/

Usage

modularInterpInstr(stringlength,pluckPosition,shape,scale,gain,tapBody,triggerString)

Where:

o stringlength: the length of the string in meters

e pluckPosition: pluck position (0-1) (1 is on the bridge)

« shape: shape of the resonator (0: square, 1: square with rounded corners,
2: round)

o scale: scale of the resonator (0: small, 1: medium, 2: large)

e gain: of the string excitation

e tapBody: send an impulse in the body of the instrument where the string
is connected (1 for on, 0 for off)

e triggerString: trigger signal for the string (1 for on, 0 for off)

(pm.)modularInterpInstr_ui_MIDI

Ready-to-use MIDI-enabled string instrument with a modular body (see
modeInterpRes and https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/)
with built-in UL

Usage

modularInterpInstr_ui_MIDI : _

Bowed String Instruments

Low and high level basic string instruments parts. Most of the elements in this
section can be used in a bidirectional chain.

(pm.)bowTable

Extremely basic bow table that can be used to implement a wide range of bow
types for many different bowed string instruments (violin, cello, etc.).

211

https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/

Usage
excitation : bowTable(offeset,slope)
Where:

e excitation: an excitation signal
e offset: table offset
e slope: table slope

(pm.)violinBowTable

Violin bow table based on bowTable.

Usage
bowVelocity : violinBowTable(bowPressure)
Where:

e bowVelocity: velocity of the bow/excitation signal (0-1)
¢ bowPressure: bow pressure on the string (0-1)

(pm.)bowInteraction

Bidirectional block implementing the interaction of a bow in a chain.
Usage
chain(... : stringSegment : bowInteraction(bowTable) : stringSegment :

Where:

e bowTable: the bow table

212

(pm.)violinBow

Bidirectional block implementing a violin bow and its interaction with a string.

Usage

chain(... : stringSegment : violinBow(bowPressure,bowVelocity) : stringSegment : ...)
Where:

¢ bowVelocity: velocity of the bow / excitation signal (0-1)
o bowPressure: bow pressure on the string (0-1)

(pm.)violinBowedString

Violin bowed string bidirectional block with controllable bow position. Termi-
nations are not implemented in this model.

Usage
chain(nuts : violinBowedString(stringlength,bowPressure,bowVelocity,bowPosition) : bridge)
Where:

e stringlength: the length of the string in meters

o bowVelocity: velocity of the bow / excitation signal (0-1)
o bowPressure: bow pressure on the string (0-1)

o bowPosition: the position of the bow on the string (0-1)

(pm.)violinNuts

Bidirectional block implementing simple violin nuts. This function is based on
bridgeFilter.

213

Usage

chain(violinNuts : stringSegment : ...)

(pm.)violinBridge

Bidirectional block implementing a simple violin bridge. This function is based
on bridgeFilter.

Usage

chain(... : stringSegment : violinBridge

(pm.)violinBody

Bidirectional block implementing a simple violin body (just a simple resonant
lowpass filter).

Usage

chain(... : stringSegment : violinBridge : violinBody)

(pm.)violinModel

Ready-to-use simple violin physical model. This model implements a single
string. Additional strings should be created by making a polyphonic applications
out of this function. Pitch is changed by changing the length of the string (and
not through a finger model).

214

Usage

violinModel (stringlLength,bowPressure,bowVelocity,bridgeReflexion,
bridgeAbsorption,bowPosition)

Where:

o stringlength: the length of the string in meters

o bowVelocity: velocity of the bow / excitation signal (0-1)
o bowPressure: bow pressure on the string (0-1))

o bowPosition: the position of the bow on the string (0-1)

(pm.)violin_ui

Ready-to-use violin physical model with built-in UL

Usage

violinModel ui : _

(pm.)violin_ui_MIDI

Ready-to-use MIDI-enabled violin physical model with built-in UI.

Usage

violin_ui_MIDI

Wind Instruments

Low and high level basic wind instruments parts. Most of the elements in this
section can be used in a bidirectional chain.

215

(pm.)openTube

A tube segment without terminations (same as stringSegment).

Usage
chain(A : openTube(maxLength,length) : B)

Where:

o maxLength: the maximum length of the tube in meters (should be static)
o length: the length of the tube in meters

(pm.)reedTable

Extremely basic reed table that can be used to implement a wide range of single
reed types for many different instruments (saxophone, clarinet, etc.).

Usage
excitation : reedTable(offeset,slope)
Where:

e excitation: an excitation signal
e offset: table offset
e slope: table slope

(pm.)fluteJetTable

Extremely basic flute jet table.

216

Usage
excitation : fluteJetTable : _
Where:

e excitation: an excitation signal

(pm.)brassLipsTable
Simple brass lips/mouthpiece table. Since this implementation is very basic and

that the lips and tube of the instrument are coupled to each other, the length
of that tube must be provided here.

Usage
excitation : brassLipsTable(tubeLength,lipsTension)
Where:

e excitation: an excitation signal (can be DC)

e tubelLength: length in meters of the tube connected to the mouthpiece
o lipsTension: tension of the lips (0-1) (default: 0.5)

(pm.)clarinetReed

Clarinet reed based on reedTable with controllable stiffness.

Usage
excitation : clarinetReed(stiffness)
Where:

e excitation: an excitation signal
o stiffness: reed stiffness (0-1)

217

(pm.)clarinetMouthPiece
Bidirectional block implementing a clarinet mouthpiece as well as the various

interactions happening with traveling waves. This element is ready to be plugged
to a tube. ..

Usage
chain(clarinetMouthPiece(reedStiffness,pressure) : tube : etc.)
Where:

e pressure: the pressure of the air flow (DC) created by the virtual per-
former (0-1). This can also be any kind of signal that will directly injected
in the mouthpiece (e.g., breath noise, etc.).

o reedStiffness: reed stiffness (0-1)

(pm.)brassLips

Bidirectional block implementing a brass mouthpiece as well as the various
interactions happening with traveling waves. This element is ready to be plugged
to a tube. ..

Usage
chain(brassLips(tubelength,lipsTension,pressure) : tube : etc.)
Where:

e tubelength: length in meters of the tube connected to the mouthpiece

e lipsTension: tension of the lips (0-1) (default: 0.5)

e pressure: the pressure of the air flow (DC) created by the virtual per-
former (0-1). This can also be any kind of signal that will directly injected
in the mouthpiece (e.g., breath noise, etc.).

218

(pm.)fluteEmbouchure
Bidirectional block implementing a flute embouchure as well as the various in-

teractions happening with traveling waves. This element is ready to be plugged
between tubes segments. ..

Usage
chain(... : tube : fluteEmbouchure(pressure) : tube : etc.)
Where:
o pressure: the pressure of the air flow (DC) created by the virtual per-

former (0-1). This can also be any kind of signal that will directly injected
in the mouthpiece (e.g., breath noise, etc.).

(pm.)wBell

Generic wind instrument bell bidirectional block that should be placed at the
end of a chain.

Usage
chain(... : wBell(opening))
Where:

o opening: the “opening” of bell (0-1)

(pm.)fluteHead

Simple flute head implementing waves reflexion.

Usage

chain(fluteHead : tube : ...)

219

(pm.)fluteFoot

Simple flute foot implementing waves reflexion and dispersion.

Usage

chain(... : tube : fluteFoot)

(pm.)clarinetModel

A simple clarinet physical model without tone holes (pitch is changed by chang-
ing the length of the tube of the instrument).

Usage
clarinetModel (length,pressure,reedStiffness,bellOpening)
Where:

e tubelength: the length of the tube in meters

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will directly injected in the
mouthpiece (e.g., breath noise, etc.).

o reedStiffness: reed stiffness (0-1)

e bellOpening: the opening of bell (0-1)

(pm.)clarinetModel_ui

Same as clarinetModel but with a built-in UI. This function doesn’t implement
a virtual “blower”, thus pressure remains an argument here.

Usage
clarinetModel_ui(pressure)

Where:

220

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will be directly injected in
the mouthpiece (e.g., breath noise, etc.).

(pm.)clarinet_ui

Ready-to-use clarinet physical model with built-in UI based on clarinetModel.

Usage

clarinet_ui : _

(pm.)clarinet_ui_MIDI

Ready-to-use MIDI compliant clarinet physical model with built-in UL

Usage

clarinet_ui_MIDI : _

(pm.)brassModel

A simple generic brass instrument physical model without pistons (pitch is
changed by changing the length of the tube of the instrument). This model
is kind of hard to control and might not sound very good if bad parameters are
given to it...

Usage
brassModel (tubeLength ,lipsTension,mute,pressure)
Where:

o tubeLength: the length of the tube in meters

221

o lipsTension: tension of the lips (0-1) (default: 0.5)

e mute: mute opening at the end of the instrument (0-1) (default: 0.5)

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will directly injected in the
mouthpiece (e.g., breath noise, etc.).

(pm.)brassModel_ui

Same as brassModel but with a built-in UI. This function doesn’t implement a
virtual “blower”; thus pressure remains an argument here.

Usage
brassModel_ui (pressure)

Where:

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will be directly injected in
the mouthpiece (e.g., breath noise, etc.).

(pm.)brass_ui

Ready-to-use brass instrument physical model with built-in UI based on
brassModel.

Usage

brass_ui : _

(pm.)brass_ui_MIDI

Ready-to-use MIDI-controllable brass instrument physical model with built-in
UL

222

Usage

brass_ui_MIDI

(pm.)fluteModel

A simple generic flute instrument physical model without tone holes (pitch is
changed by changing the length of the tube of the instrument).

Usage
fluteModel (tubeLength,mouthPosition,pressure)
Where:

e tubelength: the length of the tube in meters

o mouthPosition: position of the mouth on the embouchure (0-1) (default:
0.5)

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will directly injected in the
mouthpiece (e.g., breath noise, etc.).

(pm.)fluteModel_ui

Same as fluteModel but with a built-in UL This function doesn’t implement a
virtual “blower”; thus pressure remains an argument here.

Usage
fluteModel_ui(pressure)
Where:

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will be directly injected in
the mouthpiece (e.g., breath noise, etc.).

223

(pm.)flute_ui

Ready-to-use flute physical model with built-in UI based on fluteModel.

Usage

flute_ui : _

(pm.)flute_ui_MIDI

Ready-to-use MIDI-controllable flute physical model with built-in UI.

Usage

flute_ui_MIDI

Exciters

Various kind of excitation signal generators.

(pm.)impulseExcitation

Creates an impulse excitation of one sample.

Usage

gate = button(’gate’);
impulseExcitation(gate) : chain;

Where:

e gate: a gate button

224

(pm.)strikeModel

Creates a filtered noise excitation.

Usage

gate = button(’gate’);
strikeModel (LPcutoff ,HPcutoff,sharpness,gain,gate)

Where:

e HPcutoff: highpass cutoff frequency

e LPcutoff: lowpass cutoff frequency

o sharpness: sharpness of the attack and release (0-1)
e gain: gain of the excitation

o gate: a gate button/trigger signal (0/1)

(pm.)strike

Strikes generator with controllable excitation position.

Usage

gate = button(’gate’);
strike (exPos,sharpness,gain,gate) : chain;

Where:

: chain;

e exPos: excitation position wiht 0: for max low freqs and 1: for max high
freqs. So, on membrane for example, 0 would be the middle and 1 the

edge
o sharpness: sharpness of the attack and release (0-1)
e gain: gain of the excitation
o gate: a gate button/trigger signal (0/1)

(pm.)pluckString

Creates a plucking excitation signal.

225

Usage

trigger = button(’gate’);
pluckString(stringlength,cutoff ,maxFreq,sharpness,trigger)

Where:

o stringlength: length of the string to pluck

e cutoff: cutoff ratio (1 for default)

o maxFreq: max frequency ratio (1 for default)

o sharpness: sharpness of the attack and release (1 for default)
o gain: gain of the excitation (0-1)

e trigger: trigger signal (1 for on, 0 for off)

(pm.)blower

A virtual blower creating a DC signal with some breath noise in it.

Usage
blower (pressure,breathGain,breathCutoff)
Where:

o pressure: pressure (0-1)

e breathGain: breath noise gain (0-1) (recommended: 0.005)
o breathCutoff: breath cuttoff frequency (Hz) (recommended: 2000)

(pm.)blower_ui

Same as blower but with a built-in UL

Usage

blower : somethingToBeBlown

226

Modal Percussions

High and low level functions for modal synthesis of percussion instruments.

(pm.)djembeModel

Dirt-simple djembe modal physical model. Mode parameters are empirically
calculated and don’t correspond to any measurements or 3D model. They kind
of sound good though :).

Usage
excitation : djembeModel(freq)
Where:

e excitation: excitation signal
e freq: fundamental frequency of the bar

(pm.)djembe

Dirt-simple djembe modal physical model. Mode parameters are empirically
calculated and don’t correspond to any measurements or 3D model. They kind
of sound good though :).

This model also implements a virtual “exciter”.

Usage
djembe(freq,strikePosition,strikeSharpness,gain,trigger)
Where:

e freq: fundamental frequency of the model

o strikePosition: strike position (0 for the middle of the membrane and
1 for the edge)

e strikeSharpness: sharpness of the strike (0-1, default: 0.5)

e gain: gain of the strike

o trigger: trigger signal (0: off, 1: on)

227

(pm.)djembe_ui_MIDI

Simple MIDI controllable djembe physical model with built-in UL

Usage

djembe_ui_MIDI

(pm.)marimbaBarModel

Generic marimba tone bar modal model.

This model was generated using mesh2faust from a 3D CAD model of a
marimba tone bar (1ibraries/modalmodels/marimbaBar). The corresponding
CAD model is that of a C2 tone bar (original fundamental frequency: ~65Hz).
While marimbaBarModel allows to translate the harmonic content of the
generated sound by providing a frequency (freq), mode transposition has
limits and the model will sound less and less like a marimba tone bar as it
diverges from C2. To make an accurate model of a marimba, we’d want to
have an independent model for each bar. ..

This model contains 5 excitation positions going linearly from the center bottom
to the center top of the bar. Obviously, a model with more excitation position
could be regenerated using mesh2faust.

Usage
excitation : marimbaBarModel (freq,exPos,t60,t60DecayRatio,t60DecaySlope)

Where:

e excitation: excitation signal

e freq: fundamental frequency of the bar

o exPos: excitation position (0-4)

o t60: TG0 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

228

(pm.)marimbaResTube

Simple marimba resonance tube.
Usage
marimbaResTube (tubeLength,excitation)

Where:

e tubelLength: the length of the tube in meters
o excitation: the excitation signal (audio in)

(pm.)marimbaModel

Simple marimba physical model implementing a single tone bar connected to
tube. This model is scalable and can be adapted to any size of bar/tube (see
marimbaBarModel to know more about the limitations of this type of system).

Usage
excitation : marimbaModel (freq,exPos)
Where:

e freq: the frequency of the bar/tube couple
o exPos: excitation position (0-4)

(pm.)marimba

Simple marimba physical model implementing a single tone bar connected to
tube. This model is scalable and can be adapted to any size of bar/tube (see
marimbaBarModel to know more about the limitations of this type of system).

This function also implement a virtual exciter to drive the model.

229

Usage
excitation : marimba(freq,strikePosition,strikeCutoff,strikeSharpness,gain,trigger)
Where:

e excitation: the excitation signal

e freq: the frequency of the bar/tube couple

o strikePosition: strike position (0-4)

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: shaarpness of the strike (recommened: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)marimba_ui_MIDI
Simple MIDI controllable marimba physical model with built-in Ul implement-
ing a single tone bar connected to tube. This model is scalable and can be

adapted to any size of bar/tube (see marimbaBarModel to know more about the
limitations of this type of system).

Usage

marimba_ui_MIDT : _

(pm.) churchBellModel

Generic church bell modal model generated by mesh2faust from libraries/modalmodels/churchBell.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 301 mm.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

230

Usage
excitation : churchBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

o nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
e t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.) churchBell

Generic church bell modal model.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 301 mm.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage
excitation : churchBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)
Where:

e excitation: the excitation signal

e strikePosition: strike position (0-6)

e strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: shaarpness of the strike (recommened: ~0.25)

e gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

231

(pm.)churchBell_ui

Church bell physical model based on churchBell with built-in Ul

Usage

churchBell ui : _

(pm.)englishBellModel

English church bell modal model generated by mesh2faust from libraries/modalmodels/englishBell.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : englishBellModel(nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

o nModes: number of synthesized modes (max: 50)

« exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

232

(pm.)englishBell

English church bell modal model.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage
excitation : englishBell (strikePosition,strikeCutoff,strikeSharpness, gain, trigger)
Where:

e excitation: the excitation signal

e strikePosition: strike position (0-6)

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: shaarpness of the strike (recommened: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)englishBell_ui

English church bell physical model based on englishBell with built-in UL

Usage

englishBell ui : _

233

(pm.)frenchBellModel

French church bell modal model generated by mesh2faust from libraries/modalmodels/frenchBell.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : frenchBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

o nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

o t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
e t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)frenchBell

French church bell modal model.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

234

Usage
excitation : frenchBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)
Where:

e excitation: the excitation signal

e strikePosition: strike position (0-6)

e strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: shaarpness of the strike (recommened: ~0.25)

e gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)frenchBell_ui

French church bell physical model based on frenchBell with built-in UI.

Usage

frenchBell ui : _

(pm.)germanBellModel

German church bell modal model generated by mesh2faust from libraries/modalmodels/germanBell.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

235

Usage
excitation : germanBellModel(nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

o nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
e t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)germanBell

German church bell modal model.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage

excitation : germanBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)

Where:

e excitation: the excitation signal

o strikePosition: strike position (0-6)

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: shaarpness of the strike (recommened: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

236

(pm.)germanBell_ui

German church bell physical model based on germanBell with built-in UL

Usage

germanBell ui : _

(pm.)russianBellModel

Russian church bell modal model generated by mesh2faust from libraries/modalmodels/russianBell.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 2 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : russianBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

o nModes: number of synthesized modes (max: 50)

« exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

e t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

237

(pm.)russianBell

Russian church bell modal model.

Modeled after D. Bartocha and . Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 2 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage
excitation : russianBell(strikePosition,strikeCutoff,strikeSharpness, gain, trigger)
Where:

e excitation: the excitation signal

e strikePosition: strike position (0-6)

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: shaarpness of the strike (recommened: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)russianBell_ui

Russian church bell physical model based on russianBell with built-in UL

Usage

russianBell ui : _

238

(pm.)standardBellModel

Standard church bell modal model generated by mesh2faust from libraries/modalmodels/standardBell.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 1.8 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : standardBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

e nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)standardBell

Standard church bell modal model.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 1.8 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

239

Usage
excitation : standardBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)

Where:

e excitation: the excitation signal

e strikePosition: strike position (0-6)

e strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: shaarpness of the strike (recommened: ~0.25)

e gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)standardBell _ui

Standard church bell physical model based on standardBell with built-in UI.

Usage

standardBell _ui : _

Vocal Synthesis

Vocal synthesizer functions (source/filter, fof, etc.).

(pm.)formantValues

Formant data values.

The formant data used here come from the CSOUND manual http://www.
csounds.com/manual/html/.

240

http://www.csounds.com/manual/html/
http://www.csounds.com/manual/html/

Usage

ba.take(j+1,formantValues.f(i))
ba.take(j+1,formantValues.g(i))
ba.take(j+1,formantValues.bw(i))

Where:

e i: formant number

e j: (voiceType*nFormants)+vowel

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

(pm.)voiceGender

Calculate the gender for the provided voiceType value. (0: male, 1: female)

Usage
voiceGender (voiceType)
Where:

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

(pm.)skirtWidthMultiplier

Calculates value to multiply bandwidth to obtain skirtwidth for a Fof filter.

Usage
skirtWidthMultiplier(vowel,freq,gender)
Where:

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

e freq: the fundamental frequency of the excitation signal
o gender: gender of the voice used in the fof filter (0: male, 1: female)

241

(pm.)autobendFreq

Autobends the center frequencies of formants 1 and 2 based on the fundamen-
tal frequency of the excitation signal and leaves all other formant frequencies
unchanged. Ported from chant-1ib. Reference: https://ccrma.stanford.edu/
~rmichon/chantLib/.

Usage
_ : autobendFreq(n,freq,voiceType)
Where:

e n: formant index

e freq: the fundamental frequency of the excitation signal

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e input is the center frequency of the corresponding formant

(pm.)vocalEffort
Changes the gains of the formants based on the fundamental frequency of the
excitation signal. Higher formants are reinforced for higher fundamental fre-

quencies. Ported from chant-1ib. Reference: https://ccrma.stanford.edu/
~rmichon/chantLib/.

Usage
_ : vocalEffort(freq,gender)
Where:

e freq: the fundamental frequency of the excitation signal
o gender: the gender of the voice type (0: male, 1: female)
e input is the linear amplitude of the formant

242

https://ccrma.stanford.edu/~rmichon/chantLib/
https://ccrma.stanford.edu/~rmichon/chantLib/
https://ccrma.stanford.edu/~rmichon/chantLib/
https://ccrma.stanford.edu/~rmichon/chantLib/

(pm.)fof

Function to generate a single Formant-Wave-Function. Reference: https://
ccrma.stanford.edu/~mjolsen/pdfs/smc2016_ MOlsenFOF.pdf.

Usage
_ : fof(fc,bw,a,g)
Where:

e fc: formant center frequency,

e bw: formant bandwidth (Hz),

o sw: formant skirtwidth (Hz)

e g: linear scale factor (g=1 gives 0dB amplitude response at fc)
e input is an impulse signal to excite filter

(pm.)fofSH

FOF with sample and hold used on bw and a parameter used in the filter-cycling
FOF function fofCycle. Reference: https://ccrma.stanford.edu/~mjolsen/
pdfs/smc2016_ MOlsenFOF.pdf.

Usage
_ : fofSH(fc,bw,a,g)

Where: all parameters same as for fof

(pm.)fofCycle
FOF implementation where time-varying filter parameter noise is mitigated by

using a cycle of n sample and hold FOF filters. Reference: https://ccrma.
stanford.edu/~mjolsen/pdfs/smc2016_ MOlsenFOF.pdf.

243

https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf
https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf
https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf
https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf
https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf
https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf

Usage
_ : fofCycle(fc,bw,a,g,n)
Where:

e n: the number of FOF filters to cycle through
o all other parameters are same as for fof

(pm.)fofSmooth

FOF implementation where time-varying filter parameter noise is mitigated by
lowpass filtering the filter parameters bw and a with smooth.

Usage
_ ¢ fofSmooth(fc,bw,sw,g,tau)
Where:

e tau: the desired smoothing time constant in seconds
o all other parameters are same as for fof

(pm.)formantFilterFofCycle

Formant filter based on a single FOF filter. Formant parameters are linearly
interpolated allowing to go smoothly from one vowel to another. A cycle of n
fof filters with sample-and-hold is used so that the fof filter parameters can be
varied in realtime. This technique is more robust but more computationally
expensive than formantFilterFofSmooth.Voice type can be selected but must
correspond to the frequency range of the provided source to be realistic.

244

Usage
_ : formantFilterFofCycle(voiceType,vowel,nFormants,i,freq)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: o, 4: u)

e nFormants: number of formant regions in frequency domain, typically 5

o i: formant number (i.e. 0 - 4) used to index formant data value arrays

o freq: fundamental frequency of excitation signal. Used to calculate rise
time of envelope

(pm.)formantFilterFofSmooth

Formant filter based on a single FOF filter. Formant parameters are linearly
interpolated allowing to go smoothly from one vowel to another. Fof filter
parameters are lowpass filtered to mitigate possible noise from varying them
in realtime. Voice type can be selected but must correspond to the frequency
range of the provided source to be realistic.

Usage
_ : formantFilterFofSmooth(voiceType,vowel,nFormants,i,freq)
Where:

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

e nFormants: number of formant regions in frequency domain, typically 5

o i: formant number (i.e. 1 - 5) used to index formant data value arrays

e freq: fundamental frequency of excitation signal. Used to calculate rise
time of envelope

245

(pm.)formantFilterBP

Formant filter based on a single resonant bandpass filter. Formant parameters
are linearly interpolated allowing to go smoothly from one vowel to another.
Voice type can be selected but must correspond to the frequency range of the
provided source to be realistic.

Usage
_ : formantFilterBP(voiceType,vowel,nFormants,i,freq)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: o, 4: u)

e nFormants: number of formant regions in frequency domain, typically 5

e i: formant index used to index formant data value arrays

e freq: fundamental frequency of excitation signal.

(pm.)formantFilterbank

Formant filterbank which can use different types of filterbank functions and dif-
ferent excitation signals. Formant parameters are linearly interpolated allowing
to go smoothly from one vowel to another. Voice type can be selected but must
correspond to the frequency range of the provided source to be realistic.

Usage
_ : formantFilterbank(voiceType,vowel,formantGen,freq)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: o, 4: u)

o formantGen: the specific formant filterbank function (i.e. FormantFilter-
bankBP, FormantFilterbankFof,. . .)

o freq: fundamental frequency of excitation signal. Needed for FOF version
to calculate rise time of envelope

246

(pm.)formantFilterbankFofCycle

Formant filterbank based on a bank of fof filters. Formant parameters are
linearly interpolated allowing to go smoothly from one vowel to another. Voice
type can be selected but must correspond to the frequency range of the provided
source to be realistic.

Usage
_ : formantFilterbankFofCycle(voiceType,vowel,freq)

Where:

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

e freq: the fundamental frequency of the excitation signal. Needed to
calculate the skirtwidth of the FOF envelopes and for the autobendFreq
and vocalEffort functions

(pm.)formantFilterbankFofSmooth

Formant filterbank based on a bank of fof filters. Formant parameters are
linearly interpolated allowing to go smoothly from one vowel to another. Voice
type can be selected but must correspond to the frequency range of the provided
source to be realistic.

Usage
_ @ formantFilterbankFofSmooth(voiceType,vowel,freq)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: o, 4: u)

e freq: the fundamental frequency of the excitation signal. Needed to
calculate the skirtwidth of the FOF envelopes and for the autobendFreq
and vocalEffort functions

247

(pm.)formantFilterbankBP

Formant filterbank based on a bank of resonant bandpass filters. Formant pa-
rameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the provided source to be realistic.

Usage
_ : formantFilterbankBP(voiceType,vowel)

Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

e freq: the fundamental frequency of the excitation signal. Needed for the
autobendFreq and vocalEffort functions

(pm.) SFFormantModel

Simple formant/vocal synthesizer based on a source/filter model. The source
and filterbank must be specified by the user. filterbank must take the same
input parameters as formantFilterbank (BP/FofCycle /FofSmooth). Formant
parameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the synthesized voice to be realistic.

Usage
SFFormantModel (voiceType,vowel,exType,freq,gain,source,filterbank,isFof)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0,4: u

o exType: voice vs. fricative sound ratio (0-1 where 1 is 100% fricative)

e freq: the fundamental frequency of the source signal

e gain: linear gain multiplier to multiply the source by

o isFof: whether model is FOF based (0: no, 1: yes)

248

(pm.)SFFormantModelFofCycle

Simple formant/vocal synthesizer based on a source/filter model. The source
is just a periodic impulse and the “filter” is a bank of FOF filters. Formant
parameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the synthesized voice to be realistic. This model does not work with noise in
the source signal so exType has been removed and model does not depend on
SFFormantModel function.

Usage
SFFormantModelFofCycle(voiceType,vowel,freq,gain)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e vowel: the vowel (0: a, 1: ¢, 2: i, 3: 0,4: u

e freq: the fundamental frequency of the source signal

e gain: linear gain multiplier to multiply the source by

(pm.)SFFormantModelFofSmooth

Simple formant/vocal synthesizer based on a source/filter model. The source
is just a periodic impulse and the “filter” is a bank of FOF filters. Formant
parameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the synthesized voice to be realistic.

Usage
SFFormantModelFofSmooth(voiceType,vowel,freq,gain)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u

e freq: the fundamental frequency of the source signal

e gain: linear gain multiplier to multiply the source by

249

(pm.)SFFormantModelBP

Simple formant/vocal synthesizer based on a source/filter model. The source
is just a sawtooth wave and the “filter” is a bank of resonant bandpass filters.
Formant parameters are linearly interpolated allowing to go smoothly from one
vowel to another. Voice type can be selected but must correspond to the fre-
quency range of the synthesized voice to be realistic.

The formant data used here come from the CSOUND manual http://www.
csounds.com/manual /html/.

Usage
SFFormantModelBP (voiceType,vowel,exType,freq,gain)
Where:

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0,4: u

o exType: voice vs. fricative sound ratio (0-1 where 1 is 100% fricative)

e freq: the fundamental frequency of the source signal

o gain: linear gain multiplier to multiply the source by

(pm.)SFFormantModelFofCycle_ui

Ready-to-use source-filter vocal synthesizer with built-in user interface.

Usage

SFFormantModelFofCycle_ui : _

(pm.)SFFormantModelFofSmooth_ui

Ready-to-use source-filter vocal synthesizer with built-in user interface.

250

http://www.csounds.com/manual/html/
http://www.csounds.com/manual/html/

Usage

SFFormantModelFofSmooth_ui :

(pm.)SFFormantModelBP_ui

Ready-to-use source-filter vocal synthesizer with built-in user interface.

Usage

SFFormantModelBP_ui : _

(pm.)SFFormantModelFofCycle_ui_MIDI

Ready-to-use MIDI-controllable source-filter vocal synthesizer.

Usage

SFFormantModelFofCycle_ui_MIDI : _

(pm.)SFFormantModelFofSmooth_ui_MIDI

Ready-to-use MIDI-controllable source-filter vocal synthesizer.

Usage

SFFormantModelFofSmooth_ui_ MIDI : _

(pm.)SFFormantModelBP_ui_MIDI

Ready-to-use MIDI-controllable source-filter vocal synthesizer.

251

Usage

SFFormantModelBP_ui_MIDI : _

Misc Functions

Various miscellaneous functions.

(pm.)allpassNL

Bidirectional block adding nonlinearities in both directions in a chain. Nonlin-
earities are created by modulating the coefficients of a passive allpass filter by
the signal it is processing.

Usage
chain(... : allpassNL(nonlinearity) : ...)
Where:

e nonlinearity: amount of nonlinearity to be added (0-1)

modalModel

// Implement multiple resonance modes using resonant bandpass filters.

Usage
_ : modalModel(n, freqs, t60s, gains)
Where:

e n: number of given modes

e fregs : list of filter center freqencies

e t60s : list of mode resonance durations (in seconds)
o gains : list of mode gains (0-1)

252

For example, to generate a model with 2 modes (440 Hz and 660 Hz, a fifth)
where the higher one decays faster and is attenuated:

os.impulse : modalModel(2, (440, 660),

(0.5, 0.25),

(ba.db2linear(-1), ba.db2linear(-6)) B
Further reading: Grumiaux et. al., 2017: Impulse-Response and CAD-Mod//
el-Based Physical Modeling in Faust

reducemaps.lib

Correct documentation in interpolators.lib, typo in reducemaps.lib, cleanup. A
library to handle reduce/map kind of operation in Faust. Its official prefix is
rm.

reverbs.lib

A library of reverb effects. Its official prefix is re.

Schroeder Reverberators
(re.)jcrev

This artificial reverberator take a mono signal and output stereo (satrev)
and quad (jcrev). They were implemented by John Chowning in the MUS10
computer-music language (descended from Music V by Max Mathews). They
are Schroeder Reverberators, well tuned for their size. Nowadays, the more
expensive freeverb is more commonly used (see the Faust examples directory).

jcrev reverb below was made from a listing of “RV”, dated April 14, 1972, which
was recovered from an old SAIL DART backup tape. John Chowning thinks
this might be the one that became the well known and often copied JCREV.

jcrev is a standard Faust function

Usage

_ : jerev : _,_,_,_

253

https://raw.githubusercontent.com/grame-cncm/faust/master-dev/tools/physicalModeling/ir2dsp/lacPaper2017.pdf
https://raw.githubusercontent.com/grame-cncm/faust/master-dev/tools/physicalModeling/ir2dsp/lacPaper2017.pdf

(re.)satrev

This artificial reverberator take a mono signal and output stereo (satrev)
and quad (jcrev). They were implemented by John Chowning in the MUS10
computer-music language (descended from Music V by Max Mathews). They
are Schroeder Reverberators, well tuned for their size. Nowadays, the more
expensive freeverb is more commonly used (see the Faust examples directory).

satrev was made from a listing of “SATREV”, dated May 15, 1971, which
was recovered from an old SAIL DART backup tape. John Chowning thinks
this might be the one used on his often-heard brass canon sound examples,
one of which can be found at https://ccrma.stanford.edu/~jos/wav/FM
BrassCanon2.wav.

Usage

_ : satrev : _,_

Feedback Delay Network (FDIN) Reverberators
(re.)fdnrev0

Pure Feedback Delay Network Reverberator (generalized for easy scaling).
fdnrev0 is a standard Faust function.

Usage

<1,2,4,...,N signals> <:
fdnrevO (MAXDELAY,delays,BBS0,freqs,durs,loopgainmax,nonl) :>
<1,2,4,...,N signals>

Where:

e N:2,4,8, ... (power of 2)

e MAXDELAY: power of 2 at least as large as longest delay-line length

e delays: N delay lines, N a power of 2, lengths perferably coprime

e BBSO: odd positive integer = order of bandsplit desired at freqs

e fregs: NB-1 crossover frequencies separating desired frequency bands
o durs: NB decay times (t60) desired for the various bands

e loopgainmax: scalar gain between 0 and 1 used to “squelch” the reverb
e nonl: nonlinearity (0 to 0.999..., 0 being linear)

254

https://ccrma.stanford.edu/~jos/wav/FM_BrassCanon2.wav
https://ccrma.stanford.edu/~jos/wav/FM_BrassCanon2.wav

Reference

https://ccrma.stanford.edu/~jos/pasp/FDN__Reverberation.html

(re.)zita_rev_fdn

Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb zita-revl
by Fons Adriaensen fons@linuxaudio.org. This is an FDN reverb with allpass
comb filters in each feedback delay in addition to the damping filters.

Usage
bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : bus(8)

Where:

e f1: crossover frequency (Hz) separating dc and midrange frequencies
o £2: frequency (Hz) above f1 where T60 = t60m/2 (see below)

e t60dc: desired decay time (t60) at frequency 0 (sec)

o t60m: desired decay time (t60) at midrange frequencies (sec)

o fsmax: maximum sampling rate to be used (Hz)

Reference

o http://www.kokkinizita.net/linuxaudio/zita-rev1l-doc/quickguide.html
o https://ccrma.stanford.edu/~jos/pasp/Zita_ Rev1.html

(re.)zita_revl_stereo

Extend zita_rev_fdn to include zita_revl input/output mapping in stereo
mode. zita_revl_stereo is a standard Faust function.

Usage

, : zita_revl_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,_

Where:

rdel = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms) (remaining
args and refs as for zita_rev_fdn above)

255

https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html
mailto:fons@linuxaudio.org
http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html
https://ccrma.stanford.edu/~jos/pasp/Zita_Rev1.html

(re.)zita_revl_ambi

Extend zita_rev_ fdn to include zita_revl input/output mapping in “ambison-
ics mode”, as provided in the Linux C++ version.

Usage
, : zita_revl_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,_,_,_

Where:

rgxyz = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9) (remaining
args and references as for zita_revl stereo above)

Freeverb

(re.)mono_freeverb

A simple Schroeder reverberator primarily developed by “Jezar at Dreampoint”
that is extensively used in the free-software world. It uses four Schroeder
allpasses in series and eight parallel Schroeder-Moorer filtered-feedback comb-
filters for each audio channel, and is said to be especially well tuned.

mono_freeverb is a standard Faust function.

Usage
_ : mono_freeverb(fbl, fb2, damp, spread) : _;
Where:

o fbl: coefficient of the lowpass comb filters (0-1)

o £b2: coefficient of the allpass comb filters (0-1)

e damp: damping of the lowpass comb filter (0-1)

e spread: spatial spread in number of samples (for stereo)

License

While this version is licensed LGPL (with exception) along with other GRAME
library functions, the file freeverb.dsp in the examples directory of older Faust
distributions, such as faust-0.9.85, was released under the BSD license, which is
less restrictive.

256

(re.)stereo_freeverb

A simple Schroeder reverberator primarily developed by “Jezar at Dreampoint”
that is extensively used in the free-software world. It uses four Schroeder
allpasses in series and eight parallel Schroeder-Moorer filtered-feedback comb-
filters for each audio channel, and is said to be especially well tuned.

Usage
, : stereo_freeverb(fbl, fb2, damp, spread) : _,_;
Where:

o fbl: coefficient of the lowpass comb filters (0-1)

e fb2: coefficient of the allpass comb filters (0-1)

e damp: damping of the lowpass comb filter (0-1)

o spread: spatial spread in number of samples (for stereo)

routes.lib

A library of basic elements to handle signal routing in Faust. Its official prefix
is ro.

Functions Reference
(ro.)cross

Cross n signals: (x1,x2,..,xn) -> (xn,..,x2,x1). crossis a standard Faust
function.

Usage

cross(n)
,,_ : cross(3) : _,_,_

Where:

e n: number of signals (int, must be known at compile time)

257

Note

Special case: cross2:

cross2 = _,cross(2),_;

(ro.)crossnn

Cross two bus(n)s.

Usage

—s_s.-. : crossmm(n) : _,_,...

Where:

e n: the number of signals in the bus

(ro.)crossnl

Cross bus(n) and bus(1).

Usage
y... : crossni(n) : _,_

Where:

e n: the number of signals in the first bus

(ro.)interleave
Interleave rowcol cables from column order to row order. input : x(0), x(1), x(2)

.., x(rowcol-1) output: x(0+0row), z(0+1row), x(0+2row), ..., x(1+0row),
x(14+1row), z(1+2row), ...

258

o row: the number of row (int, known at compile time)
e column: the number of column (int, known at compile time)

(ro.)butterfly

Addition (first half) then substraction (second half) of interleaved signals.

Usage
Cs_s_s_ & butterfly(m) : _,_,_,_
Where:

o n: size of the butterfly (n is int, even and known at compile time)

(ro.)hadamard

Hadamard matrix function of size n = 2°k.

Usage
_s_s_>_ : hadamard(m) : _,_,_,_

Where:

e n: 27k, size of the matrix (int, must be known at compile time)

Note:
Implementation contributed by Remy Muller.

259

(ro.)recursivize

Create a recursion from two arbitrary processors p and q.

Usage
, : recursivize(p,q) : _,_

Where:

e p: the forward arbitrary processor
e q: the feedback arbitrary processor

signals.lib

A library of basic elements to handle signals in Faust. Its official prefix is si.

Functions Reference
(si.)bus

n parallel cables. bus is a standard Faust function.

Usage

bus (n)
bus(4) : _,_,_,_

Where:

e n: is an integer known at compile time that indicates the number of parallel
cables.

(si.)block

Block - terminate n signals. block is a standard Faust function.

260

Usage
s ... 1 block(n) : _,...
Where:

e n: the number of signals to be blocked

(si.)interpolate

Linear interpolation between two signals.
Usage

, : interpolate(i)

Where:

e i: interpolation control between 0 and 1 (0: first input; 1: second input)

(si.)smoo

Smoothing function based on smooth ideal to smooth UI signals (sliders, etc.)
down. smoo is a standard Faust function.

Usage

hslider(...) : smoo;

(si.)polySmooth
A smoothing function based on smooth that doesn’t smooth when a trigger

signal is given. This is very useful when making polyphonic synthesizer to make
sure that the value of the parameter is the right one when the note is started.

261

Usage
hslider(...) : polySmooth(g,s,d)
Where:

o g: the gate/trigger signal used when making polyphonic synths

o s: the smoothness (see smooth)

e d: the number of samples to wait before the signal start being smoothed
after g switched to 1

(si.)smoothAndH

A smoothing function based on smooth that holds its output signal when a
trigger is sent to it. This feature is convenient when implementing polyphonic
instruments to prevent some smoothed parameter to change when a note-off
event is sent.

Usage
hslider(...) : smoothAndH(g,s)
Where:

o g: the hold signal (0 for hold, 1 for bypass)
o s: the smoothness (see smooth)

(si.)bsmooth

Block smooth linear interpolation during a block of samples.

Usage

hslider(...) : bsmooth : _

262

(si.)dot

Dot product for two vectors of size n.

Usage

= e e : dOt(n)

o n: size of the vectors (int, must be known at compile time)

(si.)smooth

Exponential smoothing by a unity-dc-gain one-pole lowpass. smooth is a stan-
dard Faust function.

Usage:
_ : smooth(tau2pole(tau))
Where:
e tau: desired smoothing time constant in seconds, or
hslider(...) : smooth(s)
Where:

e s: smoothness between 0 and 1. s=0 for no smoothing, s=0.999 is “very
smooth”, s>1 is unstable, and s=1 yields the zero signal for all inputs.
The exponential time-constant is approximately 1/(1-s) samples, when s
is close to (but less than) 1.

Reference:

https://cerma.stanford.edu/~jos/mdft /Convolution_ Example_2_ ADSR.html

263

https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html

(si.)cbus

n parallel cables for complex signals. cbus is a standard Faust function.

Usage

cbus (n)
cbus(4) : (r0,i0), (r1,i1), (r2,i2), (r3,i3)

Where:

e n: isan integer known at compile time that indicates the number of parallel

cables.
e each complex number is represented by two real signals as (real,imag)

(si.)cmul

multiply two complex signals pointwise. cmul is a standard Faust function.

Usage
(r1,i1) : cmul(r2,i2) : (_,_);

Where:

« Each complex number is represented by two real signals as (real,imag), so
e (r1,il) = real and imaginary parts of signal 1
e (r2,i2) = real and imaginary parts of signal 2

(si.)cconj

complex conjugation of a (complex) signal. cconj is a standard Faust function.

264

Usage

(r1,i1) : cconj : (

R

Where:

o Each complex number is represented by two real signals as (real,imag), so
e (r1,i1) = real and imaginary parts of the input signal
e (r1,-i1) = real and imaginary parts of the output signal

(si.)lag_ud

Lag filter with separate times for up and down.

Usage

_ : lag_ud(up, dn) : _;

(si.)rev

Reverse the input signal by blocks of N>0 samples. rev(1) is the indentity
function. rev(N) has a latency of N-1 samples.

Usage
_ s rev(N) : _;
Where:

e N: the block size

soundfiles.lib

A library to handle soundfiles in Faust. Its official prefix is so.

265

Functions Reference
(so.)loop

Play a soundfile in a loop taking into account its sampling rate loop is a standard
Faust function.

Usage
loop(sf, part)
Where:

o sf: the soundfile
e part: the part in the soundfile list of sounds

(so.)loop_speed

Play a soundfile in a loop taking into account its sampling rate, with speed
control loop_speed is a standard Faust function.

Usage
loop_speed(sf, part, speed)
Where:

e sf: the soundfile
e part: the part in the soundfile list of sounds
o speed: the speed between 0 and n

(so.)loop_speed_level

Play a soundfile in a loop taking into account its sampling rate, with speed and
level controls loop_speed_level is a standard Faust function.

266

Usage

loop_speed_level(sf, part, speed, level)

Where:

e sf: the soundfile

e part: the part in the soundfile list of sounds
o speed: the speed between 0 and n

e level: the volume between 0 and n

spats.lib

This library contains a collection of tools for sound spatialization. Its official
prefix is sp.

(sp.)panner

A simple linear stereo panner. panner is a standard Faust function.
Usage

_ : panner(g) e

Where:

e g: the panning (0-1)

(sp.)spat

GMEM SPAT: n-outputs spatializer. spat is a standard Faust function.

267

Usage
_ @ spat(n,r,d) : _,_,...
Where:

e n: number of outputs
o r: rotation (between 0 et 1)
o d: distance of the source (between 0 et 1)

(sp.)stereoize

Transform an arbitrary processor p into a stereo processor with 2 inputs and 2
outputs.

Usage
, : stereoize(p) : _,_

Where:

o p: the arbitrary processor

synths.lib

This library contains a collection of synthesizers. Its official prefix is sy.

(sy.)popFilterPerc

A simple percussion instrument based on a “popped” resonant bandpass filter.
popFilterPerc is a standard Faust function.

268

Usage
popFilterDrum(freq,q,gate) : _;
Where:

o freq: the resonance frequency of the instrument
e q: the q of the res filter (typically, 5 is a good value)
o gate: the trigger signal (0 or 1)

(sy.)dubDub

A simple synth based on a sawtooth wave filtered by a resonant lowpass. dubDub
is a standard Faust function.

Usage
dubDub(freq,ctFreq,q,gate) HE
Where:

e freq: frequency of the sawtooth

e ctFreq: cutoff frequency of the filter
e q: Q of the filter

e gate: the trigger signal (0 or 1)

(sy.)sawTrombone

A simple trombone based on a lowpassed sawtooth wave. sawTrombone is a
standard Faust function.

269

Usage
sawTrombone (att,freq,gain,gate)
Where:

e att: exponential attack duration in s (typically 0.01)
o freq: the frequency

e gain: the gain (0-1)

o gate: the gate (0 or 1)

(sy.)combString

Simplest string physical model ever based on a comb filter. combString is a
standard Faust function.

Usage
combString(freq,res,gate) : _;
Where:

e freq: the frequency of the string
e res: string T60 (resonance time) in second
o gate: trigger signal (0 or 1)

(sy.)additiveDrum

A simple drum using additive synthesis. additiveDrum is a standard Faust
function.

270

Usage
additiveDrum(freq,freqRatio, gain,harmDec,att,rel, gate)
Where:

o freq: the resonance frequency of the drum

e freqRatio: a list of ratio to choose the frequency of the mode in func-
tion of freq e.g.(1 1.2 1.5 ...). The first element should always be one
(fundamental).

o gain: the gain of each mode as a list (1 0.9 0.8 ...). The first element is
the gain of the fundamental.

e harmDec: harmonic decay ratio (0-1): configure the speed at which higher
modes decay compare to lower modes.

e att: attack duration in second

o rel: release duration in second

o gate: trigger signal (0 or 1)

(sy.)fm

An FM synthesizer with an arbitrary number of modulators connected as a
sequence. fm is a standard Faust function.

Usage

freqs = (300,400,...);
indices = (20,...);
fm(fregs,indices)

Where:

e fregs: a list of frequencies where the first one is the frequency of the
carrier and the others, the frequency of the modulator(s)
e indices: the indices of modulation (Nfregs-1)

vaeffects.lib

A library of virtual analog filter effects. Its official prefix is ve.

271

Moog Filters

(ve.)moog_vct

Moog “Voltage Controlled Filter” (VCF) in “analog” form. Moog VCF im-
plemented using the same logical block diagram as the classic analog circuit.
As such, it neglects the one-sample delay associated with the feedback path
around the four one-poles. This extra delay alters the response, especially at

high frequencies (see reference [1] for details). See moog_vcf_2b below for a
more accurate implementation.

Usage
moog_vcf (res,fr)
Where:

e res: normalized amount of corner-resonance between 0 and 1 (0 is no
resonance, 1 is maximum)
o fr: corner-resonance frequency in Hz (less than SR/6.3 or so)

References

¢ https://ccrma.stanford.edu/~stilti/papers/moogvcf.pdf
o https://ccrma.stanford.edu/~jos/pasp/vegf.html

(ve.)moog_vcf_2b[n]

Moog “Voltage Controlled Filter” (VCF) as two biquads. Implementation of
the ideal Moog VCF transfer function factored into second-order sections. As
a result, it is more accurate than moog_vcf above, but its coefficient formulas
are more complex when one or both parameters are varied. Here, res is the
fourth root of that in moog_vcf, so, as the sampling rate approaches infinity,
moog_vcf (res,fr) becomes equivalent to moog_vcf_2b[n] (res”4,fr) (when
res and fr are constant). moog_vcf_2b uses two direct-form biquads (t£2).
moog_vcf_2bn uses two protected normalized-ladder biquads (t£2np).

272

https://ccrma.stanford.edu/~stilti/papers/moogvcf.pdf
https://ccrma.stanford.edu/~jos/pasp/vegf.html

Usage

moog_vcf_2b(res,fr)
moog_vcf_2bn(res,fr)

Where:

o res: normalized amount of corner-resonance between 0 and 1 (0 is min
resonance, 1 is maximum)
o fr: corner-resonance frequency in Hz

(ve.)moogLadder

Virtual analog model of the 4th-order Moog Ladder, which is arguably the
most well-known ladder filter in analog synthesizers. Several lst-order filters
are cascaded in series. Feedback is then used, in part, to control the cut-off
frequency and the resonance.

This filter was implemented in Faust by Eric Tarr during the 2019 Embedded
DSP With Faust Workshop.

References

o https://www.willpirkle.com/706-2/
e http://www.willpirkle.com /Downloads/AN-4Virtual AnalogFilters.pdf

Usage
_ : mooglLadder (normFreq,Q) : _

Where:

o normFreq: normalized frequency (0-1)
e Qiq

273

https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://www.willpirkle.com/706-2/
http://www.willpirkle.com/Downloads/AN-4VirtualAnalogFilters.pdf

(ve.)moogHalfLadder

Virtual analog model of the 2nd-order Moog Half Ladder (simplified version of
(ve.)moogLadder). Several 1st-order filters are cascaded in series. Feedback is
then used, in part, to control the cut-off frequency and the resonance.

This filter was implemented in Faust by Eric Tarr during the 2019 Embedded
DSP With Faust Workshop.

References

o https://www.willpirkle.com/app-notes/virtual-analog-moog-half-ladder-
filter
o http://www.willpirkle.com/Downloads/AN-8MoogHalfLadderFilter.pdf

Usage
_ : moogHalfLadder (normFreq,Q) : _

Where:

o normFreq: normalized frequency (0-1)
e Q:q

(ve.)diodeLadder

4th order virtual analog diode ladder filter. In addition to the individual states
used within each independent 1st-order filter, there are also additional feedback
paths found in the block diagram. These feedback paths are labeled as con-
necting states. Rather than separately storing these connecting states in the
Faust implementation, they are simply implicitly calculated by tracing back to
the other states (s1,s2,s3,s4) each recursive step.

This filter was implemented in Faust by Eric Tarr during the 2019 Embedded
DSP With Faust Workshop.

References

o https://www.willpirkle.com /virtual-analog-diode-ladder-filter/
o http://www.willpirkle.com/Downloads/AN-6DiodeLadderFilter.pdf

274

https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://www.willpirkle.com/app-notes/virtual-analog-moog-half-ladder-filter
https://www.willpirkle.com/app-notes/virtual-analog-moog-half-ladder-filter
http://www.willpirkle.com/Downloads/AN-8MoogHalfLadderFilter.pdf
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://www.willpirkle.com/virtual-analog-diode-ladder-filter/
http://www.willpirkle.com/Downloads/AN-6DiodeLadderFilter.pdf

Usage
_ : diodeLadder (normFreq,Q) _

Where:

o normFreq: normalized frequency (0-1)
e Qiq

Korg 35 Filters

The following filters are virtual analog models of the Korg 35 low-pass filter and
high-pass filter found in the MS-10 and MS-20 synthesizers. The virtual analog
models for the LPF and HPF are different, making these filters more interesting
than simply tapping different states of the same circuit.

These filters were implemented in Faust by Eric Tarr during the 2019 Embedded
DSP With Faust Workshop.

Filter history:
https://secretlifeofsynthesizers.com/the-korg-35-filter/
(ve.)korg35LPF

Virtual analog models of the Korg 35 low-pass filter found in the MS-10 and
MS-20 synthesizers.

Usage
_ : korg35LPF (normFreq,Q)

Where:

o normFreq: normalized frequency (0-1)
e Qiq

275

https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://secretlifeofsynthesizers.com/the-korg-35-filter/

(ve.)korg35HPF

Virtual analog models of the Korg 35 high-pass filter found in the MS-10 and
MS-20 synthesizers.

Usage
_ : korg35HPF (normFreq, Q)

Where:

o normFreq: normalized frequency (0-1)
e Q:q

Oberheim Filters

The following filter (4 types) is an implementation of the virtual analog model
described in Section 7.2 of the Will Pirkle book, “Designing Software Synthesizer
Plug-ins in C+4++. It is based on the block diagram in Figure 7.5.

The Oberheim filter is a state-variable filter with soft-clipping distortion within
the circuit.

In many VA filters, distortion is accomplished using the “tanh” function. For
this Faust implementation, that distortion function was replaced with the
(ef.)cubicnl function.

(ve.)oberheim

Generic multi-outputs Oberheim filter (see description above).

Usage
_ : oberheim(normFreq,Q) : _,_,_,_

Where:

o normFreq: normalized frequency (0-1)
e Qiq

276

(ve.)oberheimBSF

Band-Stop Oberheim filter (see description above).

Usage
_ : oberheimBSF (normFreq,Q)
Where:

o normFreq: normalized frequency (0-1)
e Q:q

(ve.)oberheimBPF

Band-Pass Oberheim filter (see description above).

Usage
_ : oberheimBPF (normFreq,Q)
Where:

o normFreq: normalized frequency (0-1)
e Qiq

(ve.)oberheimHPF

High-Pass Oberheim filter (see description above).

Usage
_ : oberheimHPF (normFreq,Q) : _
Where:

o normFreq: normalized frequency (0-1)
e Q:q

277

(ve.)oberheimLPF

Low-Pass Oberheim filter (see description above).
Usage
_ : oberheimLPF(normFreq,Q) _

Where:

o normFreq: normalized frequency (0-1)
e Qiq

Sallen Key Filters

The following filters were implemented based on VA models of synthesizer filters.

The modeling approach is based on a Topology Preserving Transform (TPT) to
resolve the delay-free feedback loop in the corresponding analog filters.

The primary processing block used to build other filters (Moog, Korg, etc.) is
based on a 1st-order Sallen-Key filter.

The filters included in this script are 1st-order LPF/HPF and 2nd-order state-
variable filters capable of LPF, HPF, and BPF.

Resources:

e Vadim Zavalishin (2018) “The Art of VA Filter Design”, v2.1.0
https://www.native-instruments.com/fileadmin/ni_ media/downloads/
pdf/VAFilterDesign_ 2.1.0.pdf

o Will Pirkle (2014) “Resolving Delay-Free Loops in Recursive Filters Using
the Modified Hirm& Method”, AES 137 http://www.aes.org/e-lib/browse.
cfm?elib=17517

o Description and diagrams of 1st- and 2nd-order TPT filters: https://www.
willpirkle.com/706-2/

278

https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.0.pdf
https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.0.pdf
http://www.aes.org/e-lib/browse.cfm?elib=17517
http://www.aes.org/e-lib/browse.cfm?elib=17517
https://www.willpirkle.com/706-2/
https://www.willpirkle.com/706-2/

(ve.)sallenKeyOnePole

Sallen-Key generic One Pole filter (see description above).

For the Faust implementation of this filter, recursion (letrec) is used for storing
filter “states” The output (e.g. y) is calculated by using the input signal and
the previous states of the filter. During the current recursive step, the states of
the filter (e.g. s) for the next step are also calculated. Admittedly, this is not an
efficient way to implement a filter because it requires independently calculating
the output and each state during each recursive step. However, it works as a
way to store and use “states” within the constraints of Faust.

(ve.)sallenKeyOnePoleLPF

Sallen-Key One Pole lowpass filter (see description above).
Usage

_ : sallenKeyOnePoleLPF (normFreq)

Where:

normFreq: normalized frequency (0-1)

(ve.)sallenKeyOnePoleHPF

Sallen-Key One Pole Highpass filter (see description above). The dry input
signal is routed in parallel to the output. The LPF’d signal is subtracted from
the input so that the HPF remains.

Usage
_ : sallenKeyOnePoleHPF (normFreq)
Where:

o normFreq: normalized frequency (0-1)

279

(ve.)sallenKey2ndOrder

Sallen-Key generic multi-outputs 2nd order filter.

This is a 2nd-order Sallen-Key state-variable filter. The idea is that by “tap-
ping” into different points in the circuit, different filters (LPF,BPF HPF) can
be achieved. See Figure 4.6 of https://www.willpirkle.com/706-2/

This is also a good example of the next step for generalizing the Faust pro-
gramming approach used for all these VA filters. In this case, there are three
things to calculate each recursive step (y,s1,s2). For each thing, the circuit is
only calculated up to that point.

Comparing the LPF to BPF, the output signal (y) is calculated similarly. Ex-
cept, the output of the BPF stops earlier in the circuit. Similarly, the states (s1
and s2) only differ in that s2 includes a couple more terms beyond what is used
for s1.

Usage
_ : sallenKey2ndOrder (normFreq,Q) _a_s_

Where:

o normFreq: normalized frequency (0-1)
e Q:q

(ve.)sallenKey2ndOrderLPF

Sallen-Key 2nd order lowpass filter (see description above).

Usage
_ : sallenKey2ndOrderLPF (normFreq,Q) _
Where:

o normFreq: normalized frequency (0-1)
e Q:q

280

https://www.willpirkle.com/706-2/

(ve.)sallenKey2ndOrderBPF

Sallen-Key 2nd order bandpass filter (see description above).

Usage
_ : sallenKey2ndOrderBPF (normFreq,Q) _

Where:

o normFreq: normalized frequency (0-1)
e Qiq

(ve.)sallenKey2ndOrderHPF

Sallen-Key 2nd order highpass filter (see description above).

Usage
_ : sallenKey2ndOrderHPF (normFreq,Q) _

Where:

o normFreq: normalized frequency (0-1)
e Qiq

Effects
(ve.)wahd

Wah effect, 4th order. wah4 is a standard Faust function.

Usage
_ : wah4(fr)
Where:

e fr: resonance frequency in Hz

281

Reference

https://ccrma.stanford.edu/~jos/pasp/vegf.html

(ve.)autowah

Auto-wah effect. autowah is a standard Faust function.

Usage
_ : autowah(level)
Where:

o level: amount of effect desired (0 to 1).

(ve.)crybaby

Digitized CryBaby wah pedal. crybaby is a standard Faust function.
Usage

_ : crybaby(wah)

Where:

e wah: “pedal angle” from 0 to 1

Reference

https://ccrma.stanford.edu/~jos/pasp/vegf.html

(ve.)vocoder

A very simple vocoder where the spectrum of the modulation signal is analyzed
using a filter bank. vocoder is a standard Faust function.

282

https://ccrma.stanford.edu/~jos/pasp/vegf.html
https://ccrma.stanford.edu/~jos/pasp/vegf.html

Usage
_ : vocoder(nBands,att,rel,BWRatio,source,excitation) : _;
Where:

e nBands: Number of vocoder bands

e att: Attack time in seconds

e rel: Release time in seconds

o BWRatio: Coefficient to adjust the bandwidth of each band (0.1 - 2)
e source: Modulation signal

o excitation: Excitation/Carrier signal

Licenses

STK 4.3 License

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

Any person wishing to distribute modifications to the Software is asked to send
the modifications to the original developer so that they can be incorporated into
the canonical version. For software copyrighted by Julius O. Smith III, email
your modifications to jos@Qccrma.stanford.edu. This is, however, not a binding
provision of this license.

THE SOFTWARE IS PROVIDED “AS 1S”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

283

mailto:jos@ccrma.stanford.edu

LGPL License

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU C Library; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

284

	Faust Libraries
	Using the Faust Libraries
	Contributing
	New Functions
	New Libraries

	General Organization
	Coding Conventions
	Documentation
	Library Import
	``Demo'' Functions
	``Standard'' Functions

	Copyright / License

	Standard Functions
	Analysis Tools
	Basic Elements
	Conversion
	Effects
	Envelope Generators
	Filters
	Oscillators/Sound Generators
	Synths

	Primitives
	User Interface Primitives
	button
	checkbox
	hslider
	nentry
	vslider

	analyzers.lib
	Amplitude Tracking
	(an.)amp_follower
	(an.)amp_follower_ud
	(an.)amp_follower_ar

	Spectrum-Analyzers
	(an.)mth_octave_analyzer

	Mth-Octave Spectral Level
	(an.)mth_octave_spectral_level6e
	(an.)[third|half]_octave_[analyzer|filterbank]

	Arbritary-Crossover Filter-Banks and Spectrum Analyzers
	(an.)analyzer

	Fast Fourier Transform (fft) and its Inverse (ifft)
	(an.)gortzelOpt
	(an.)gortzelComp
	(an.)goertzel
	(an.)fft
	(an.)ifft

	basics.lib
	Conversion Tools
	(ba.)samp2sec
	(ba.)sec2samp
	(ba.)db2linear
	(ba.)linear2db
	(ba.)lin2LogGain
	(ba.)log2LinGain
	(ba.)tau2pole
	(ba.)pole2tau
	(ba.)midikey2hz
	(ba.)hz2midikey
	(ba.)semi2ratio
	(ba.)ratio2semi
	(ba.)pianokey2hz
	(ba.)hz2pianokey

	Counters and Time/Tempo Tools
	(ba.)countdown
	(ba.)countup
	(ba.)sweep
	(ba.)time
	(ba.)ramp
	(ba.)tempo
	(ba.)period
	(ba.)pulse
	(ba.)pulsen
	(ba.)cycle
	(ba.)beat
	(ba.)pulse_countup
	(ba.)pulse_countdown
	(ba.)pulse_countup_loop
	(ba.)resetCtr
	(ba.)pulse_countdown_loop

	Array Processing/Pattern Matching
	(ba.)count
	(ba.)take
	(ba.)subseq

	Selectors (Conditions)
	(ba.)if
	(ba.)selector
	(ba.)select2stereo
	(ba.)selectn
	(ba.)selectmulti

	Other
	(ba.)latch
	(ba.)sAndH
	(ba.)downSample
	(ba.)peakhold
	(ba.)peakholder
	(ba.)impulsify
	(ba.)automat
	(ba.)bpf
	(ba.)listInterp
	(ba.)bypass1
	(ba.)bypass2
	(ba.)bypass1to2
	(ba.)bypass_fade
	(ba.)toggle
	(ba.)on_and_off
	(ba.)selectoutn

	Sliding Reduce
	(ba.)slidingReduce
	(ba.)slidingSumN
	(ba.)slidingMaxN
	(ba.)slidingSumN
	(ba.)slidingMeanN
	(ba.)slidingRMSn

	compressors.lib
	Functions Reference
	(co.)compressor_mono
	(co.)compressor_stereo
	(co.)limiter_1176_R4_mono
	(co.)limiter_1176_R4_stereo

	delays.lib
	Basic Delay Functions
	(de.)delay
	(de.)fdelay
	(de.)sdelay

	Lagrange Interpolation
	(de.)fdelaylti and (de.)fdelayltv
	(de.)fdelay[n]

	Thiran Allpass Interpolation
	(de.)fdelay[n]a

	demos.lib
	Analyzers
	(dm.)mth_octave_spectral_level_demo

	Filters
	(dm.)parametric_eq_demo
	(dm.)spectral_tilt_demo
	(dm.)mth_octave_filterbank_demo and (dm.)filterbank_demo

	Effects
	(dm.)cubicnl_demo
	(dm.)gate_demo
	(dm.)compressor_demo
	(dm.)moog_vcf_demo
	(dm.)wah4_demo
	(dm.)crybaby_demo
	(dm.)flanger_demo
	(dm.)phaser2_demo
	(dm.)freeverb_demo
	(dm.)stereo_reverb_tester
	(dm.)fdnrev0_demo
	(dm.)zita_rev_fdn_demo
	(dm.)zita_light
	(dm.)zita_rev1

	Generators
	(dm.)sawtooth_demo
	(dm.)virtual_analog_oscillator_demo
	(dm.)oscrs_demo
	(dm.)velvet_noise_demo
	(dm.)latch_demo
	(dm.)envelopes_demo
	(dm.)fft_spectral_level_demo
	(dm.)reverse_echo_demo(nChans)
	(dm.)pospass_demo
	(dm.)exciter
	(dm.)vocoder_demo

	dx7.lib
	(dx.)dx7_ampf
	(dx.)dx7_egraterisef
	(dx.)dx7_egraterisepercf
	(dx.)dx7_egratedecayf
	(dx.)dx7_egratedecaypercf
	(dx.)dx7_eglv2peakf
	(dx.)dx7_velsensf
	(dx.)dx7_fdbkscalef
	(dx.)dx7_op
	(dx.)dx7_algo
	(dx.)dx7_ui

	envelopes.lib
	Functions Reference
	(en.)smoothEnvelope
	(en.)ar
	(en.)arfe
	(en.)are
	(en.)asr
	(en.)adsr
	(en.)adsre
	(en.)asre
	(en.)dx7envelope

	filters.lib
	Basic Filters
	(fi.)zero
	(fi.)pole
	(fi.)integrator
	(fi.)dcblockerat
	(fi.)dcblocker

	Comb Filters
	(fi.)ff_comb
	(fi.)ff_fcomb
	(fi.)ffcombfilter
	(fi.)fb_comb
	(fi.)fb_fcomb
	(fi.)rev1
	(fi.)fbcombfilter and (fi.)ffbcombfilter
	(fi.)allpass_comb
	(fi.)allpass_fcomb
	(fi.)rev2
	(fi.)allpass_fcomb5 and (fi.)allpass_fcomb1a

	Direct-Form Digital Filter Sections
	(fi.)iir
	(fi.)fir
	(fi.)conv and (fi.)convN
	(fi.)tf1, (fi.)tf2 and (fi.)tf3
	(fi.)notchw

	Direct-Form Second-Order Biquad Sections
	(fi.)tf21, (fi.)tf22, (fi.)tf22t and (fi.)tf21t

	Ladder/Lattice Digital Filters
	(fi.)av2sv
	(fi.)bvav2nuv
	(fi.)iir_lat2
	(fi.)allpassnt
	(fi.)iir_kl
	(fi.)allpassnklt
	(fi.)iir_lat1
	(fi.)allpassn1mt
	(fi.)iir_nl
	(fi.)allpassnnlt

	Useful Special Cases
	(fi.)tf2np
	(fi.)wgr
	(fi.)nlf2
	(fi.)apnl

	Ladder/Lattice Allpass Filters
	(fi.)allpassn
	(fi.)allpassnn
	(fi.)allpasskl
	(fi.)allpass1m

	Digital Filter Sections Specified as Analog Filter Sections
	(fi.)tf2s and (fi.)tf2snp
	(fi.)tf3slf
	(fi.)tf1s
	(fi.)tf2sb
	(fi.)tf1sb

	Simple Resonator Filters
	(fi.)resonlp
	(fi.)resonhp
	(fi.)resonbp

	Butterworth Lowpass/Highpass Filters
	(fi.)lowpass
	(fi.)highpass
	(fi.)lowpass0_highpass1

	Special Filter-Bank Delay-Equalizing Allpass Filters
	(fi.)lowpass_plus|minus_highpass

	Elliptic (Cauer) Lowpass Filters
	(fi.)lowpass3e
	(fi.)lowpass6e

	Elliptic Highpass Filters
	(fi.)highpass3e
	(fi.)highpass6e

	Butterworth Bandpass/Bandstop Filters
	(fi.)bandpass
	(fi.)bandstop

	Elliptic Bandpass Filters
	(fi.)bandpass6e
	(fi.)bandpass12e
	(fi.)pospass

	Parametric Equalizers (Shelf, Peaking)
	(fi.)low_shelf
	(fi.)high_shelf
	(fi.)peak_eq
	(fi.)peak_eq_cq
	(fi.)peak_eq_rm
	(fi.)spectral_tilt
	(fi.)levelfilter
	(fi.)levelfilterN

	Mth-Octave Filter-Banks
	(fi.)mth_octave_filterbank[n]

	Arbitrary-Crossover Filter-Banks and Spectrum Analyzers
	(fi.)filterbank
	(fi.)filterbanki

	hoa.lib
	(ho.)encoder
	(ho.)decoder
	(ho.)decoderStereo

	Optimization Functions
	(ho.)optimBasic
	(ho.)optimMaxRe
	(ho.)optimInPhase
	Usage
	(ho.)wider
	(ho.)map
	(ho.)rotate

	interpolators.lib
	(it.)interpolate_linear
	(it.)interpolate_cosine
	(it.)interpolate_cubic
	(it.)interpolator_linear
	(it.)interpolator_cosine
	(it.)interpolator_cubic
	(it.)interpolator_select

	maths.lib
	Functions Reference
	(ma.)SR
	(ma.)BS
	(ma.)PI
	(ma.)INFINITY
	(ma.)FTZ
	(ma.)neg
	(ma.)sub(x,y)
	(ma.)inv
	(ma.)cbrt
	(ma.)hypot
	(ma.)ldexp
	(ma.)scalb
	(ma.)log1p
	(ma.)logb
	(ma.)ilogb
	(ma.)log2
	(ma.)expm1
	(ma.)acosh
	(ma.)asinh
	(ma.)atanh
	(ma.)sinh
	(ma.)cosh
	(ma.)tanh
	(ma.)erf
	(ma.)erfc
	(ma.)gamma
	(ma.)lgamma
	(ma.)J0
	(ma.)J1
	(ma.)Jn
	(ma.)Y0
	(ma.)Y1
	(ma.)Yn
	(ma.)fabs, (ma.)fmax, (ma.)fmin
	(ma.)np2
	(ma.)frac
	(ma.)modulo
	(ma.)isnan
	(ma.)isinf
	(ma.)chebychev
	(ma.)chebychevpoly
	(ma.)diffn
	(ma.)signum
	(ma.)nextpow2

	misceffects.lib
	Dynamic
	(ef.)cubicnl
	(ef.)gate_mono
	(ef.)gate_stereo

	Filtering
	(ef.)speakerbp
	(ef.)piano_dispersion_filter
	(ef.)stereo_width

	Meshes
	(ef.)mesh_square
	(ef.)reverseEchoN(nChans,delay)
	(ef.)reverseDelayRamped(delay,phase)
	(ef.)uniformPanToStereo(nChans)

	Time Based
	(ef.)echo

	Pitch Shifting
	(ef.)transpose

	noises.lib
	Functions Reference
	(no.)noise
	(no.)multirandom
	(no.)multinoise
	(no.)noises
	(no.)pink_noise
	(no.)pink_noise_vm
	(no.)lfnoise, (no.)lfnoise0 and (no.)lfnoiseN
	(no.)sparse_noise_vm
	(no.)velvet_noise_vm
	(no.)gnoise

	oscillators.lib
	Wave-Table-Based Oscillators
	(os.)sinwaveform
	(os.)coswaveform
	(os.)phasor
	(os.)hs_phasor
	(os.)oscsin
	(os.)oscsinteensy
	(os.)hs_oscsin
	(os.)osccos
	(os.)oscp
	(os.)osci

	LFOs
	(os.)lf_imptrain
	(os.)lf_pulsetrainpos
	(os.)lf_pulsetrain
	(os.)lf_squarewavepos
	(os.)lf_squarewave
	(os.)lf_trianglepos
	(os.)lf_triangle

	Low Frequency Sawtooths
	(os.)lf_rawsaw
	(os.)lf_sawpos_phase
	(os.)lf_sawpos
	(os.)lf_saw

	Bandlimited Sawtooth
	(os.)sawNp
	(os.)saw2dpw
	(os.)saw3
	(os.)sawtooth
	(os.)saw2f2
	(os.)saw2f4

	Bandlimited Pulse, Square, and Impulse Trains
	(os.)pulsetrainN
	(os.)pulsetrain
	(os.)squareN
	(os.)square
	(os.)impulse
	(os.)imptrainN
	(os.)imptrain
	(os.)triangleN
	(os.)triangle

	Filter-Based Oscillators
	(os.)oscb
	(os.)oscrq
	(os.)oscrs
	(os.)oscrc
	(os.)oscs
	(os.)osc

	Waveguide-Resonator-Based Oscillators
	(os.)oscw
	(os.)oscws
	(os.)oscwq
	(os.)oscw

	Casio CZ Oscillators
	(os.)CZsaw
	(os.)CZsquare
	(os.)CZpulse
	(os.)CZsinePulse
	(os.)CZhalfSine
	(os.)CZresSaw
	(os.)CZresTriangle
	(os.)CZresTrap

	Filter-Based Oscillators
	(os.)quadosc

	phaflangers.lib
	Functions Reference
	(pf.)flanger_mono
	(pf.)flanger_stereo
	(pf.)phaser2_mono
	(pf.)phaser2_stereo

	physmodels.lib
	Global Variables
	(pm.)speedOfSound
	(pm.)maxLength

	Conversion Tools
	(pm.)f2l
	(pm.)l2f
	(pm.)l2s

	Bidirectional Utilities
	(pm.)basicBlock
	(pm.)chain
	(pm.)inLeftWave
	(pm.)inRightWave
	(pm.)in
	(pm.)outLeftWave
	(pm.)outRightWave
	(pm.)out
	(pm.)terminations
	(pm.)lTermination
	(pm.)rTermination
	(pm.)closeIns
	(pm.)closeOuts
	(pm.)endChain

	Basic Elements
	(pm.)waveguideN
	(pm.)waveguide
	(pm.)bridgeFilter
	(pm.)modeFilter

	String Instruments
	(pm.)stringSegment
	(pm.)openString
	(pm.)nylonString
	(pm.)steelString
	(pm.)openStringPick
	(pm.)openStringPickUp
	(pm.)openStringPickDown
	(pm.)ksReflexionFilter
	(pm.)rStringRigidTermination
	(pm.)lStringRigidTermination
	(pm.)elecGuitarBridge
	(pm.)elecGuitarNuts
	(pm.)guitarBridge
	(pm.)guitarNuts
	(pm.)idealString
	(pm.)ks
	(pm.)ks_ui_MIDI
	(pm.)elecGuitarModel
	(pm.)elecGuitar
	(pm.)elecGuitar_ui_MIDI
	(pm.)guitarBody
	(pm.)guitarModel
	(pm.)guitar
	(pm.)guitar_ui_MIDI
	(pm.)nylonGuitarModel
	(pm.)nylonGuitar
	(pm.)nylonGuitar_ui_MIDI
	(pm.)modeInterpRes
	(pm.)modularInterpBody
	(pm.)modularInterpStringModel
	(pm.)modularInterpInstr
	(pm.)modularInterpInstr_ui_MIDI

	Bowed String Instruments
	(pm.)bowTable
	(pm.)violinBowTable
	(pm.)bowInteraction
	(pm.)violinBow
	(pm.)violinBowedString
	(pm.)violinNuts
	(pm.)violinBridge
	(pm.)violinBody
	(pm.)violinModel
	(pm.)violin_ui
	(pm.)violin_ui_MIDI

	Wind Instruments
	(pm.)openTube
	(pm.)reedTable
	(pm.)fluteJetTable
	(pm.)brassLipsTable
	(pm.)clarinetReed
	(pm.)clarinetMouthPiece
	(pm.)brassLips
	(pm.)fluteEmbouchure
	(pm.)wBell
	(pm.)fluteHead
	(pm.)fluteFoot
	(pm.)clarinetModel
	(pm.)clarinetModel_ui
	(pm.)clarinet_ui
	(pm.)clarinet_ui_MIDI
	(pm.)brassModel
	(pm.)brassModel_ui
	(pm.)brass_ui
	(pm.)brass_ui_MIDI
	(pm.)fluteModel
	(pm.)fluteModel_ui
	(pm.)flute_ui
	(pm.)flute_ui_MIDI

	Exciters
	(pm.)impulseExcitation
	(pm.)strikeModel
	(pm.)strike
	(pm.)pluckString
	(pm.)blower
	(pm.)blower_ui

	Modal Percussions
	(pm.)djembeModel
	(pm.)djembe
	(pm.)djembe_ui_MIDI
	(pm.)marimbaBarModel
	(pm.)marimbaResTube
	(pm.)marimbaModel
	(pm.)marimba
	(pm.)marimba_ui_MIDI
	(pm.)churchBellModel
	(pm.)churchBell
	(pm.)churchBell_ui
	(pm.)englishBellModel
	(pm.)englishBell
	(pm.)englishBell_ui
	(pm.)frenchBellModel
	(pm.)frenchBell
	(pm.)frenchBell_ui
	(pm.)germanBellModel
	(pm.)germanBell
	(pm.)germanBell_ui
	(pm.)russianBellModel
	(pm.)russianBell
	(pm.)russianBell_ui
	(pm.)standardBellModel
	(pm.)standardBell
	(pm.)standardBell_ui

	Vocal Synthesis
	(pm.)formantValues
	(pm.)voiceGender
	(pm.)skirtWidthMultiplier
	(pm.)autobendFreq
	(pm.)vocalEffort
	(pm.)fof
	(pm.)fofSH
	(pm.)fofCycle
	(pm.)fofSmooth
	(pm.)formantFilterFofCycle
	(pm.)formantFilterFofSmooth
	(pm.)formantFilterBP
	(pm.)formantFilterbank
	(pm.)formantFilterbankFofCycle
	(pm.)formantFilterbankFofSmooth
	(pm.)formantFilterbankBP
	(pm.)SFFormantModel
	(pm.)SFFormantModelFofCycle
	(pm.)SFFormantModelFofSmooth
	(pm.)SFFormantModelBP
	(pm.)SFFormantModelFofCycle_ui
	(pm.)SFFormantModelFofSmooth_ui
	(pm.)SFFormantModelBP_ui
	(pm.)SFFormantModelFofCycle_ui_MIDI
	(pm.)SFFormantModelFofSmooth_ui_MIDI
	(pm.)SFFormantModelBP_ui_MIDI

	Misc Functions
	(pm.)allpassNL
	modalModel

	reducemaps.lib
	reverbs.lib
	Schroeder Reverberators
	(re.)jcrev
	(re.)satrev

	Feedback Delay Network (FDN) Reverberators
	(re.)fdnrev0
	(re.)zita_rev_fdn
	(re.)zita_rev1_stereo
	(re.)zita_rev1_ambi

	Freeverb
	(re.)mono_freeverb
	(re.)stereo_freeverb

	routes.lib
	Functions Reference
	(ro.)cross
	(ro.)crossnn
	(ro.)crossn1
	(ro.)interleave
	(ro.)butterfly
	(ro.)hadamard
	(ro.)recursivize

	signals.lib
	Functions Reference
	(si.)bus
	(si.)block
	(si.)interpolate
	(si.)smoo
	(si.)polySmooth
	(si.)smoothAndH
	(si.)bsmooth
	(si.)dot
	(si.)smooth
	(si.)cbus
	(si.)cmul
	(si.)cconj
	(si.)lag_ud
	(si.)rev

	soundfiles.lib
	Functions Reference
	(so.)loop
	(so.)loop_speed
	(so.)loop_speed_level

	spats.lib
	(sp.)panner
	(sp.)spat
	(sp.)stereoize

	synths.lib
	(sy.)popFilterPerc
	(sy.)dubDub
	(sy.)sawTrombone
	(sy.)combString
	(sy.)additiveDrum
	(sy.)fm

	vaeffects.lib
	Moog Filters
	(ve.)moog_vcf
	(ve.)moog_vcf_2b[n]
	(ve.)moogLadder
	(ve.)moogHalfLadder
	(ve.)diodeLadder

	Korg 35 Filters
	(ve.)korg35LPF
	(ve.)korg35HPF

	Oberheim Filters
	(ve.)oberheim
	(ve.)oberheimBSF
	(ve.)oberheimBPF
	(ve.)oberheimHPF
	(ve.)oberheimLPF

	Sallen Key Filters
	(ve.)sallenKeyOnePole
	(ve.)sallenKeyOnePoleLPF

	normFreq: normalized frequency (0-1)
	(ve.)sallenKeyOnePoleHPF
	(ve.)sallenKey2ndOrder
	(ve.)sallenKey2ndOrderLPF
	(ve.)sallenKey2ndOrderBPF
	(ve.)sallenKey2ndOrderHPF

	Effects
	(ve.)wah4
	(ve.)autowah
	(ve.)crybaby
	(ve.)vocoder

	Licenses
	STK 4.3 License
	LGPL License

